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Abstract
We present a language-independent verification framework
that can be instantiated with an operational semantics to auto-
matically generate a program verifier. The framework treats
both the operational semantics and the program correctness
specifications as reachability rules between matching logic
patterns, and uses the sound and relatively complete reach-
ability logic proof system to prove the specifications using
the semantics. We instantiate the framework with the seman-
tics of one academic language, KernelC, as well as with
three recent semantics of real-world languages, C, Java, and
JavaScript, developed independently of our verification infras-
tructure. We evaluate our approach empirically and show that
the generated program verifiers can check automatically the
full functional correctness of challenging heap-manipulating
programs implementing operations on list and tree data struc-
tures, like AVL trees. This is the first approach that can
turn the operational semantics of real-world languages into
correct-by-construction automatic verifiers.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—correctness proofs;
F.3.1 [Logics and Meanings Of Programs]: Specifying and
Verifying and Reasoning about Programs—mechanical veri-
fication; F.3.2 [Logics and Meanings Of Programs]: Seman-
tics of Programming Languages—operational semantics

General Terms Languages, Theory, Verification

Keywords reachability logic, matching logic, K framework
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1. Introduction
Operational semantics are easy to define and understand,
similarly to implementing an interpreter. They require little
formal training, scale up well, and, being executable, can
be tested. Thus, operational semantics are typically used as
trusted reference models for the defined languages. Despite
these advantages, they are rarely used directly for program
verification, because proofs tend to be low-level, as they work
directly with the corresponding transition system. Hoare or
dynamic logics allow higher level reasoning at the cost of
(re)defining the language as a set of abstract proof rules,
which are harder to understand and trust. The state-of-the-art
in mechanical program verification is to develop and prove
such language-specific proof systems sound w.r.t. a trusted
operational semantics [3, 26, 36], but that needs to be done
for each language separately and is labor intensive.

Defining multiple semantics for the same language and
proving the soundness of one semantics in terms of an-
other are highly uneconomical tasks when real languages
are concerned, often taking several man-years to complete.
For these reasons, many program verification tools forgo
defining an operational or an axiomatic semantics altogether,
and instead they implement ad-hoc strongest-postcondition
or weakest-precondition generation. For example, tools for C
like VCC [11] and Frama-C [21], and for Java like jStar [17]
take this approach. Sometimes this is a two step process:
first translate the high-level source code to a low-level inter-
mediate verification language (IVL), and then perform the
verification condition (VC) generation for the IVL. This leads
to some re-usability: implementing a new program verifier for
a language reduces to implementing a translator to the IVL,
and then reusing the VC generation already implemented
for the IVL. For example, VCC translates to Boogie [4] and
Frama-C translates to Why3 [21].

However, defining correct language translations is not easy.
Consider VCC. The translator consists of 5000 lines of F# [1]



and has to be correct with respect to the 650 page ISO C11
Standard. There is the added difficulty that the translation
cannot be easily tested. Due to limitations in the translation
to Boogie, VCC both misses behaviors and verifies incorrect
programs. Consider the following snippet:

1 unsigned x = UINT_MAX;
2 unsigned y = x + 1;
3 _(assert y == 0)

VCC fails to verify it, reporting an overflow in line 2. How-
ever, according to the C11 standard, the result of operations
on unsigned integers does not overflow, it is reduced modulo
UINT_MAX + 1, and thus the assertion in line 3 holds. Due to
this bug in the translation to Boogie, VCC reports a false
positive. Consider another snippet:

1 int foo(int *p, int x)
2 _(ensures *p == x)
3 _(writes p)
4 { return (*p = x); }
5
6 void main() {
7 int r;
8 foo(&r, 0) == foo(&r, 1);
9 _(assert r == 1)

10 }

According to the C11 Standard, this program is well-defined
but non-deterministic: the arguments of == can evaluate in
any order, so r could be either 0 or 1 on line 9. We have
witnessed both behaviors by using different compilation
options of the GCC compiler. However, VCC reports no error
for the assertion on line 9. These issues are caused solely by
limitations in the translation from C to Boogie.

The purpose of these examples is not to bash VCC, but
to illustrate a less glamorous aspects of program verification,
namely handling the semantics of real-world languages. VCC
is a state-of-the-art program verifier, able to efficiently reason
about very complex aspects of C programs, like threads, and
has been used to verify software components like the Mi-
crosoft Hyper-V hypervisor [29]. In particular, it should have
no problem handling the examples above. Moreover, what
makes VCC an effective program verifier are its reasoning ca-
pabilities (support for modular reasoning about concurrency,
axiomatizations of different mathematical domains, integra-
tion with SMT solvers, etc) and its conventions for writing
the correctness properties, both of which are orthogonal to the
tricky language features. Unfortunately, in general, with the
current state-of-the-art, the only way to ensure the absence
of such false positives and false negatives is to prove the
underlying axiomatic semantics, or VC generation, or IVL
translation sound with respect to a trusted reference model
of the language, typically an operational semantics. This is a
very tedious task for real-world languages.

In this work we explore an alternative way to building
program verifiers for real-world languages. Specifically, we
would like to build sound-by-construction program verifiers
directly from the operational semantics and without defining
any other semantics, VC generator, or translator. We view
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Figure 1: Architecture of Semantic-Based Verification

operational semantics as a mathematical models of program-
ming languages which should exist independently of any pro-
gram analysis. Thus, we aim to use the semantics unchanged,
and do not count the effort of defining the operational seman-
tics towards the total effort of building the program verifiers.
We build on recent theoretical work [12, 43, 45–47] that pro-
poses a language-independent proof system which derives
program properties directly from an operational semantics,
at the same granularity and compositionality as a language-
specific axiomatic semantics. Specifically, it introduces (one-
path) reachability rules, which generalize operational seman-
tics reduction rules, and (all-path) reachability rules, which
generalize Hoare triples. Then, it gives a proof system that
derives new reachability rules (program properties) from a
set of given reachability rules (the language semantics).

But does it really work in practice, with complex real-
world languages? To our knowledge, MatchC [47] is the only
program verifier based on the language-independent proof
system, which is a prototype hand-crafted for a toy language,
KernelC. MatchC mixes the language-independent reason-
ing with the operational semantics of KernelC, e.g., it hard-
codes when to perform Case Analysis (for constructs like if),
and when to perform heap abstractions folding/unfolding. To
answer this question, we build a verification framework that
takes existing operational semantics of real-world languages,
like the ones of C [18, 25], Java [8], and JavaScript [38],
and automatically turns them into correct-by-construction
program verifiers, without any language-specific hardcoding.

Figure 1 describes the architecture of our verification
framework. We developed it as part of the open-source K
semantic framework [44] (http://kframework.org),
in which the semantics of the above languages were defined.
However, the technique applies to any reduction-based seman-
tics. Our K verification infrastructure takes an operational
semantics given in K and generates queries to a theorem
prover (for example, Z3 [15]). The program correctness prop-
erties are given as reachability rules between matching logic
patterns [42]. Internally, the verifier uses the operational se-
mantics to perform symbolic execution. Also, it has an in-
ternal matching logic prover for reasoning about implication
between patterns (states), which reduces to SMT reasoning.

http://kframework.org


Our hypothesis is that many of the tricky language-specific
details (type systems, scoping, implicit conversions, etc)
are orthogonal to features that make program verification
hard (reasoning about heap-allocated mutable data structures,
integers/bit-vectors/floating-point numbers, etc). As such, we
propose a methodology to separate the two: (1) define an
operational semantics, and (2) implement reasoning in the
language-independent infrastructure.

To validate our approach, we first developed our verifica-
tion infrastructure using it only in connection with KernelC
during development. Then, we evaluated it with recent op-
erational semantics of C, Java, and JavaScript. checking the
full functional correctness of challenging heap manipulation
programs implementing the same data-structures in C, Java,
and JavaScript. The verifiers were successful in automatically
proving all the programs correct, and the verification times are
competitive. The times are dominated by symbolic execution,
which reflects the complexity of the operational semantics
(Section 6.1). Further, the development time required to write
the specifications, including the semantics-specific details,
and to fix bugs in the semantics was negligible compared to
the development time of these semantics (Section 6.2). The
semantics of C, Java, and JavaScript were developed indepen-
dently from the verification infrastrucure in the sense that they
were developed with the goal of giving a straignt-forward
yet complete operational-style semantics for each of these
languages, without verification in mind. The verification in-
frastructure was developed without detailed knowledge of
the semantics. This makes us confident that our verification
infrastructure would work with future semantics with only
minimal changes.

Our approach has two advantages over the state-of-the-
art: (1) provides a way to obtain semantics-based verifiers
without a need for multiple semantics, equivalence proofs,
or translators; and (2) separates reasoning from language-
specific operational details.

Contributions. This paper makes the following contribu-
tions:

• A language-independent verification infrastructure, which
can be instantiated with aK semantics to obtain a program
verifier for the respective language.
• Program verifiers for C, Java, and JavaScript generated

from their existing K semantics, and an evaluation of
the development cost of building these verifiers from the
operational semantics.
• Empirical evaluation of these verifiers on challenging heap

manipulation programs implementing data-structure.

2. Motivating Example
Here we illustrate our approach by checking the correctness
of binary search tree (BST) insertion implemented in C, Java,
and JavaScript. A BST is a tree where the value stored in each
node is greater than any value in the left subtree and less than

C
1 struct node {
2 int value;
3 struct node *left, *right;
4 };
5
6 struct node* new_node(int v) {
7 struct node *node;
8 node = (struct node *)
9 malloc(sizeof(struct node));

10 node->value = v;
11 node->left = NULL;
12 node->right = NULL;
13 return node;
14 }
15
16 struct node* insert(int v, struct node *t) {
17 if (t == NULL)
18 return new_node(v);
19 if (v < t->value)
20 t->left = insert(v, t->left);
21 else if (v > t->value)
22 t->right = insert(v, t->right);
23 return t;
24 }

Java
1 class Node {
2 int value;
3 Node left, right;
4
5 public Node(int value) {
6 this.value = value;
7 left = right = null;
8 }
9

10 public static Node insert(int v, Node t) {
11 if (t == null)
12 return new Node(v);
13 if (v < t.value)
14 t.left = insert(v, t.left);
15 else if (v > t.value)
16 t.right = insert(v, t.right);
17 return t;
18 }
19 }

JavaScript
1 function make_node(v) {
2 var node = {
3 value : v,
4 left : null,
5 right : null
6 };
7 return node;
8 }
9

10 function insert(v, t) {
11 if (t === null)
12 return make_node(v);
13 if (v < t.value)
14 t.left = insert(v, t.left);
15 else if (v > t.value)
16 t.right = insert(v, t.right);
17 return t;
18 }

Figure 2: Binary search tree code in C, Java, and JavaScript



any value in the right subtree. Insert recursively traverses the
tree and adds a new leaf with the value, if the value is not
already in the tree. We use the operational semantics of these
languages for symbolic execution, and delegate reasoning
about trees in the heap and BST invariants to the verification
infrastructure. Although the three definitions feature different
language constructs and memory models, the operational
semantics successfully abstracts these details.

Figure 2 shows the implementation in C, Java, and
JavaScript. C uses “struct node” to represent a tree node,
while Java uses “class Node”. JavaScript is a class-free, pro-
totypal language, where objects dynamically inherit from
other objects. In C, dynamically allocated memory (the
“heap”) is untyped; malloc allocates a block of bytes, which
is then associated the effective type struct node. In Java all
memory is typed; new creates an instance of class Node. In
JavaScript, objects are modeled in memory as maps from
property names (strings) to values (of any type). Each lan-
guage has different memory access mechanisms. The C and
Java trees store integers, while the JavaScript tree stores floats
(JavaScript integers are syntactic sugar for floats). Other
language-specific aspects are automatic type conversions and
function/method calls.

Before we discuss the correctness specifications, we intro-
duce some useful K conventions. Specifications are reacha-
bility rules ϕ ⇒∀ ϕ′, with ϕ and ϕ′ matching logic patterns
(i.e. (symbolic) program configurations with constraints). If ϕ
and ϕ′ share program configuration context, we only mention
the context once and distribute “⇒∀” through the context
where the changes take place. Logical variables starting with
“?” are existentially quantified. Rules only mention the parts
of the configuration they read or write; the rest stays un-
changed. The “requires” clause is implicitly conjuncted with
the left-hand-side configuration, and “ensures” with the right-
hand-side. It is common for operational semantics to have a
preprocessing/initializing phase. C computes structure and
function tables, Java a class table, while JavaScript creates ob-
jects and environments for all functions. A variable with the
same name as a cell but with capital letters is a placeholder
for the initial value of that cell after the preprocessing phase,
which we statically compute using the semantics.

Figure 3 shows the correctness specifications. We discuss
the C one first. The rule states that the call to insert with
value V and pointer L1 returns pointer ?L2. Since C is typed,
each value is tagged with its type, in this case int or pointer
to struct node. When the function is called, the memory
contains a binary tree with root L1 storing the algebraic tree
T1. When the function returns, the initial tree is replaced by
another tree with root ?L2 storing ?T2. The requires clause
states that T1 is a BST and V is in the appropriate range
for signed 32-bit integers. The ensures clause states that
T2 is also a BST, and the value set of ?T2 is the value
set of T1 union with V. The “···” in the mem cell stands
for a variable matching the rest of the memory (the heap

C
rule
〈functions〉 FUNCTIONS:Map 〈/functions〉
〈structs〉 STRUCTS:Map 〈/structs〉
〈mem〉...

MEM:Map (tree(L1, T1 :Tree)⇒∀ tree(?L2, ?T2 :Tree))
...〈/mem〉
〈threads〉 〈thread〉... 〈k〉

insert(tv(V:Int, int), tv(L1 :Loc, struct node))
⇒∀ tv(?L2 :Loc, struct node)

...〈/k〉 ...〈/thread〉 〈/threads〉
requires bst(T1) ∧ −2147483648 ≤ V ∧ V ≤ 2147483647
ensures bst(?T2) ∧ tree_keys(?T2) = {V} ∪ tree_keys(T1)

Java
rule
〈classes〉 CLASSES:Bag 〈/classes〉
〈objectStore〉...

tree(R1, T1 :Tree)⇒∀ tree(?R2, ?T2 :Tree)
...〈/objectStore〉
〈threads〉 〈thread〉... 〈k〉

(class Node).insert(
V: Int :: int, R1 :Ref :: class Node)

⇒∀ ?R2 :Ref :: class Node
...〈/k〉 ...〈/thread〉 〈/threads〉

requires bst(T1) ∧ −2147483648 ≤ V ∧ V ≤ 2147483647
ensures bst(?T2) ∧ tree_keys(?T2) = {V} ∪ tree_keys(T1)

JavaScript
rule
〈envs〉... ENVS:Bag (.Bag⇒∀ ?_:Bag) ...〈/envs〉
〈objs〉...

OBJS:Bag (.Bag⇒∀ ?_:Bag)
(tree(L1 :Loc, T1 :Tree)⇒∀ tree(?L2 :Loc, ?T2 :Tree))

...〈/objs〉
〈k〉 insert(V:Float, O1 :Object)⇒∀ ?O2 :Object ...〈/k〉

requires bst(T1) ∧ ¬isNaN(V)
ensures bst(?T2) ∧ tree_keys(?T2) = {V} ∪ tree_keys(T1)

Figure 3: Binary search tree correctness specifications for
C, Java, and JavaScript

frame), which stays unchanged. Similarly, the parts of the
program configuration that are not explicitly mentioned (the
configuration frame) do not change. The threads cell contains
only one thread and no “···”, which means this program is
verified in a single-threaded environment (the program is not
thread-safe). Variables FUNCTIONS, STRUCTS, and MEM
are placeholders for the tables of function declarations and
structure declarations, and the initial memory layout. Note
that here we assume signed integers are represented on 32
bits. The C standard allows other choices (e.g., 64 bits), and
we can handle those by modifying the require clause with the
appropriate value range.

The Java specification is in many ways similar to the C
one, reflecting the similarities between C and Java. The call to



insert uses the fully qualified method name, which includes
the class name Node. The type of R1 and ?R2 mentioned in the
rule is the static type of these references, class Node. The
dynamic type can be any sublcass of class Node. Variable
CLASSES:Bag stands for the statically computed class table.

Finally, we discuss the JavaScript specification. Since
JavaScript is untyped, its values do not carry a type. V is not
NaN, since NaN does not respect the order relation on non-NaN
floats, and the code is incorrect if V or the values in T1 were
NaN. The JavaScript semantics creates new environments and
objects at function call, which it does not garbage-collect
at return (an artifact of the semantics rather than of the
language). The “.Bag ⇒∀ ?_ : Bag” in both the envs and
objs cells states that there may be garbage left after the
function returns (“.” is the unit, while “_” is an anonymous
variable, here existentially quantified). JavaScript does not
have threads.

The tree heap abstraction is defined in matching logic, and
is different for each language, taking into account the specifics
of the memory model of each language. Also bst, tree_keys,
etc., are domain operation symbols in the signature.

At a high level, the three specifications are very similar.
The differences are down to language-specific and semantics-
specific details: type systems, name resolution, garbage
collection, or the statically computed information by each
semantics. The tree heap abstraction hides the differences
in memory models. Our generic verification infrastructure
reasons about the tree abstraction and the mathematical
properties of BST while deferring the symbolic execution to
the semantics. The verification is fully automated and takes a
few seconds (see Table 1 in Section 6.1).

It is possible to generate the specification rules automat-
ically from classic verification annotations (pre/post condi-
tions, loop invariants, class invariants, etc). This has been
done previously by MatchC [47]. We have not implemented
this feature, using instead a general-purpose notation which
is faithful to both reachability logic and our implementation.

3. Matching Logic Reachability
Here we present our program verification foundation, which
turns an operational semantics of a language into a sound
and relatively complete procedure for proving reachability
for that language. The idea is to treat both the operational
semantics rules and the program correctness specifications
as reachability rules between matching logic patterns, and to
use a fixed and language-independent proof system to derive
the specifications using the semantics.

3.1 Matching Logic
Matching logic [42] is a logic for specifying and reasoning
about structure by means of patterns and pattern matching.
Its sentences, the patterns, are constructed using variables,
symbols, connectives and quantifiers, but no difference is
made between function and predicate symbols. In models,

a pattern evaluates into a power-set domain (the set of
values that match it), in contrast to FOL where functions
and predicates map into a regular domain. Matching logic
generalizes several logical frameworks important for program
analysis, such as FOL with equality and separation logic. An
early variant of matching logic was presented in [48]; here
we use the latest variant in [42].

For a set of sorts S , assume Var is an S -sorted set of
variables. We write x : s for x ∈ Vars; when s is irrelevant, we
write x ∈ Var. Let P(M) denote the powerset of M.

Definition 1. Let (S ,Σ) be a many-sorted signature of sym-
bols. Matching logic (S ,Σ)-formulae, or (S ,Σ)-patterns, are
inductively defined for all sorts s ∈ S as follows:

ϕs ::= x ∈ Vars | σ(ϕs1 , ..., ϕsn ) with σ ∈ Σs1...sn,s

| ¬ϕs | ϕs ∧ ϕs | ∃x.ϕs with x ∈Var

Derived constructs can also be used, e.g., ⊥s for x : s ∧ ¬x : s,
ϕ1 → ϕ2 for ¬(ϕ1 ∧ ¬ϕ2), etc. Compared to FOL, matching
logic thus collapses all the operation and predicate symbols
into just symbols, used to build patterns, which generalize the
usual FOL terms by allowing logical connectives over them.

Definition 2. A matching logic (S ,Σ)-model M is an S -
sorted set {Ms}s∈S and together with interpretation maps
σM : Ms1 × · · · × Msn → P(Ms) for all symbols σ ∈ Σs1...sn,s.

Usual FOL (S ,Σ)-models/algebras are a special case,
where |σM(m1, ...,mn)| = 1 for any m1 ∈ Ms1 , . . . , mn ∈

Msn . Similarly, partial (S ,Σ)-algebras also fall as special
case, where |σM(m1, ...,mn)| ≤ 1, since we can capture the
undefinedness of σM on m1, . . . , mn with σM(m1, ...,mn) = ∅.

We tacitly use the same notation σM for its extension
P(Ms1 ) × · · · × P(Msn ) → P(Ms) to argument sets, i.e.,
σM(A1, ..., An) =

⋃
{σM(a1, ..., an) | a1 ∈ A1, ..., an ∈ An},

where A1 ⊆ Ms1 , ..., An ⊆ Msn .

Definition 3. Given a model M and a map ρ : Var → M,
called an M-valuation, let its extension ρ : Pattern→ P(M)
be inductively defined as follows:

• ρ(x) = {ρ(x)}, for all x ∈ Vars
• ρ(σ(ϕs1 , ..., ϕsn )) = σM(ρ(ϕ1), ...ρ(ϕn))
• ρ(¬ϕs) = Ms \ ρ(ϕs) (“\” is set difference)
• ρ(ϕ1 ∧ ϕ2) = ρ(ϕ1) ∩ ρ(ϕ2)
• ρ(∃x.ϕ) =

⋃
{ρ′(ϕ) | ρ′ : Var → M, ρ′�Var\{x}= ρ�Var\{x}}

(“ρ�A” is ρ restricted to A)

The intuition for the elements in ρ(ϕs) is that they match
the pattern ϕs, with witness ρ.

For example, suppose that Σ is the signature of Peano nat-
ural numbers and M is the model of natural numbers with
0 and succ interpreted accordingly. Then ρ(succ(x)) is inter-
preted as the singleton set containing only the successor of
ρ(x) in M; that is, given ρ, the pattern succ(x) is only matched
by the successor of ρ(x). Further, the pattern ∃x . succ(x) is
matched by all positive numbers, and 0 ∨ ∃x . succ(x) by all
numbers, that is, it is satisfied by M:



Definition 4. We write (γ, ρ) |= ϕs when the particular
matching element γ ∈ ρ(ϕs) needs to be emphasized. M
satisfies ϕs, written M |= ϕs, iff ρ(ϕs) = Ms for all ρ : Var→
M, iff (γ, ρ) |= ϕs for all ρ and γ. Pattern ϕ is valid, written
|= ϕ, iff M |= ϕ for all M. A matching logic theory is a triple
(S ,Σ, F) with F a set of patterns.

An interesting aspect of matching logic explained in detail
in [42] is that, unlike FOL, it can define equality. With it,
we can state that a symbol σ ∈ Σs1...sn,s is interpreted as a
function with the pattern ∃y . σ(x1, ..., xn) = y (free variables
are assumed universally quantified over the entire pattern).
Similar patterns can define partial/injective/surjective func-
tions, total relations, and so on. When a symbol σ ∈ Σs1...sn,s

is to be interpreted as a function, the functional notation
σ : s1 × · · · sn → s can be used instead of the equation above;
similarly we use σ : s1 × · · · sn ⇀ s for partial functions.
With this, algebraic specifications and FOL with equality,
partial or not, fall as syntactic sugar in matching logic. For
practical reasons and notational convenience, from here on
we assume a pre-defined sort Bool and take the freedom to
write Bool patterns in any sort context as a shorthand for
their equality to true. With our Peano numbers above, for
example, the pattern ∃x.(succ(x) ∧ (x > 0)) is a shorthand
for ∃x.(succ(x) ∧ (x > 0 = true)) and thus specifies all the
natural numbers strictly larger than 1.

Separation logic (see, e.g., [37]) can be framed as a
matching logic theory over a map model [42]. Indeed, let
S = {Nat,Bool,Map} and Σ contain the map symbols emp :
→ Map, _ 7→ _ : Nat×Nat ⇀ Map, and _∗_ : Map×Map ⇀
Map. Consider the canonical model of finite-domain partial
maps M, where: MNat = {0, 1, 2, ...}; MMap = partial maps
from natural numbers to natural numbers with finite domains
and undefined in 0, with emp interpreted as the map undefined
everywhere, with _ 7→ _ interpreted as the corresponding
one-element partial map except when the first argument is
0 in which case it is undefined, and with _ ∗ _ interpreted
as map merge when the two maps have disjoint domains, or
undefined otherwise. One may want to add pattern axioms
stating that ∗ is associative, commutative and has emp as unit,
that 0 7→ a = ⊥Map, that x 7→ a ∗ x 7→ b = ⊥Map, and so
on. With the above, any separation logic formula ϕ can be
regarded, as is, as a matching logic pattern of sort Map, and
ϕ is valid in separation logic if and only if M |= ϕ [42].

Thanks to the result above, we can reuse the vast body of
recent separation logic work on formalizing and reasoning
about heap patterns. For example, here is our matching logic
definition of binary trees used in our experiments: a sort Tree
with symbols leaf :→ Tree and node : Nat × Tree × Tree→
Tree to be used as constructors, together with a symbol
tree ∈ ΣNat×Tree, Map constrained by tree(0, leaf ) = emp and
tree(x, node(n,t1,t2)) = ∃yz.x 7→ [n,y,z] ∗ tree(y,t1) ∗ tree(z,t2)).
The symbol _ 7→ [_] : Nat×Seq ⇀ Map allocating sequences
of numbers (defined using binary associative operation _, _
with identity ε) at consecutive locations can be defined with

pattern equations x 7→ [ε] = emp and x 7→ [a, S ] = x 7→
a ∗ (x + 1) 7→ [S ]. Using the sound and complete matching
logic proof system [42], we can now prove:

1 7→ 3 ∗ 2 7→ 0 ∗ 3 7→ 0 ∗ 7 7→ 9 ∗ 8 7→ 1 ∗ 9 7→ 0
→ tree(7, node(9, node(3, leaf , leaf ), leaf ))

We can embed such logical reasoning within any structural
context, because in matching logic we can represent arbitrary
structure using symbols, like we build terms, this way easily
and naturally globalizing local reasoning. Consider, e.g., the
semantics of C [18, 25], whose configuration has more than
100 semantic cells like the ones in Figure 3. The semantic
cells, written using symbols 〈...〉cell, can be nested and their
grouping is associative and commutative. A top cell 〈...〉cfg

holds a subcell 〈...〉mem among many others. We can globalize
the local reasoning above to the entire C configuration [42]:

〈〈1 7→3 ∗ 2 7→0 ∗ 3 7→0 ∗ 7 7→9 ∗ 8 7→1 ∗ 9 7→0 ∗ m〉mem c〉cfg

→ 〈〈tree(7, node(9, node(3, leaf , leaf ), leaf )) ∗ m〉mem c〉cfg

Free variables c :Cfg and m :Map are universally quantified
and represent the memory frame and the configuration frame.

3.2 Specifying Reachability
We recall the two types of reachability statements that our
proof system in Section 3.3 derives: the one-path reachability
rule [46], and the all-path reachability rule [12]. These are
pairs of matching logic patterns, in this paper written ϕ⇒∃ ϕ′

and, respectively, ϕ⇒∀ ϕ′ to distinguish them, capturing the
partial correctness intuition: for any program configuration
γ that matches ϕ, one path (∃), respectively each path (∀),
derived using the operational semantics from γ either diverges
or otherwise reaches a configuration γ′ that matches ϕ′.

Let us fix the following: (1) an algebraic signature Σ,
associated to some desired configuration syntax, with a
distinguished sort Cfg, (2) a sort-wise infinite set Var of
variables, and (3) a Σ-algebra T , the configuration model,
which may but need not be a term algebra. As usual, TCfg

denotes the elements of T of sort Cfg,

Definition 5. [46] A one-path reachability rule is a pair
ϕ ⇒∃ ϕ′, with ϕ and ϕ′ patterns (may have free variables).
Rule ϕ ⇒∃ ϕ′ is weakly well-defined iff for any γ ∈ TCfg

and ρ : Var → T with (γ, ρ) |= ϕ, there exists γ′ ∈
TCfg with (γ′, ρ) |= ϕ′. A reachability system S is a set of
reachability rules. S is weakly well-defined iff each rule is
weakly well-defined. S induces a transition system (T ,⇒T

S
)

on the configuration model: γ ⇒T
S
γ′ for γ, γ′ ∈ TCfg iff there

is some rule ϕ ⇒∃ ϕ′ in S and some valuation ρ : Var→T
with (γ, ρ) |= ϕ and (γ′, ρ) |= ϕ′. A ⇒T

S
-path is a finite

sequence γ0⇒
T

S
...⇒T

S
γn with γ0,...,γn ∈ TCfg. A⇒T

S
-path is

complete iff it is not a strict prefix of any other⇒T
S

-path.

We assume an operational semantics is a set of reduction
rules “l⇒ r where b”, with l and r configuration terms and
b a boolean side condition constraining the variables of l, r.



Operational semantics styles using only such rules include
evaluation contexts [19], the CHAM [7], and K [44]. Several
large languages have been given semantics in such styles,
including the ones used in this paper: C, Java, JavaScript. The
reachability proof system below works with any set of rules
of this form, being agnostic to the particular semantics style.

A rule “l⇒ r where b” states that a ground configuration
γ which is an instance of l and satisfies condition b reduces
to an instance γ′ of r. Matching logic can express terms
with constraints as particular patterns: l ∧ b is satisfied by
exactly such γ. Thus, such a semantics is a particular weakly
well-defined reachability system S with rules of the form
“l ∧ b ⇒∃ r”. The weakly well-defined condition on S
guarantees that if γ matches the left-hand-side of a rule in S,
then the respective rule induces an outgoing transition from
γ. The transition system induced by S describes precisely the
behavior of any program in any given state. See Section 4.1
(and particularly Figure 5) for a sample operational semantics
based on evaluation contexts for the IMP language and an
example of how we we view the semantics rules as one-path
reachability rules.

Definition 6. [46] A one-path reachability rule ϕ⇒∃ ϕ′ is
satisfied, S |= ϕ⇒∃ ϕ′, iff for all γ ∈ TCfg and ρ : Var → T
such that (γ, ρ) |= ϕ, there is either a⇒T

S
-path from γ to some

γ′ such that (γ′, ρ) |= ϕ′, or there is a diverging execution
γ ⇒T

S
γ1 ⇒

T

S
γ2 ⇒

T

S
· · · from γ.

We next recall the all-path variant from [12].

Definition 7. [12] With the notation in Definition 5, an all-
path reachability rule is a pair ϕ ⇒∀ ϕ′. Rule ϕ ⇒∀ ϕ′

is satisfied, S |= ϕ⇒∀ ϕ′, iff for all complete ⇒T
S

-paths τ
starting with γ ∈ TCfg and for all ρ : Var → T such that
(γ, ρ) |= ϕ, there exists some γ′ ∈ τ such that (γ′, ρ) |= ϕ′.

The semantic validity of reachability rules captures the
same intuition of partial correctness as Hoare logic, but in
more general terms of reachability. If the language defined by
S is deterministic, then the notions of one-path and all-path
above coincide. A Hoare triple describes the resulting state
after the execution finishes, so it corresponds to a reachability
rule where the right-hand-side contains no remaining code.
However, reachability rules are strictly more expressive than
Hoare triples, as they can also specify intermediate configura-
tions (the code in the right-hand-side need not be empty). Like
Hoare triples, reachability rules can only specify properties
of complete paths (terminating execution paths). We do not
discuss total correctness; however, one can use existing tech-
niques to break reasoning about a non-terminating program
into reasoning about its terminating components. Crucially,
reachability rules provide a unified representation for both
semantic rules and program specifications. This makes them
perfectly suitable for our goal to obtain program verifiers
from operational semantics.

The correctness property of a racing increment program in
the context of a simple imperative language can be specified

by

〈〈x = x + 1; || x = x + 1;〉code 〈x 7→ m〉state〉cfg

⇒∀ ∃n (〈〈〉code 〈x 7→ n〉state〉cfg

∧ (n = m +Int 1 ∨ n = m +Int 2)

which states that every terminating execution reaches a state
where execution of both threads is complete and the value of
x has increased by 1 or 2 (this code has a race). As mentioned
before, for deterministic programs, the one-path and the
all-path reachability coincide. For example, the correctness
property of a program computing the sum of all the natural
numbers strictly less than n would be

〈〈s = 0; while(--n) s = s + n;〉code

〈n 7→ n, s 7→ s〉state〉cfg ∧ n ≥Int 1
⇒∃ 〈〈〉code 〈n 7→ 0, s 7→ n ∗Int (n −Int 1) /Int2〉state〉cfg

See Section 4.3 (and particularly Figure 6c) for a full reacha-
bility logic proof of this rule.

3.3 Reachability Proof System
Figure 4 shows our proof system for both one-path and all-
path reachability, which we refer to as reachability logic.
It combines the one-path reachability proof system in [46]
with the all-path one in [12], taking advantage of recent
developments in matching logic in [42]. The target language
is given as a weakly well-defined reachability system S. The
soundness result (Theorem 1) guarantees that S |= ϕ⇒Q ϕ′

if S ` ϕ ⇒Q ϕ′ is derivable, where Q ∈ {∀,∃}. The proof
system derives more general sequents “S,A `C ϕ ⇒Q ϕ′”,
whereA and C are sets of reachability rules. The rules inA
are called axioms and rules in C are called circularities. IfA
or C does not appear in a sequent, it is empty: S `C ϕ⇒Q ϕ′

is shorthand for S, ∅ `C ϕ ⇒Q ϕ′, and S,A ` ϕ ⇒Q ϕ′ is
shorthand for S,A `∅ ϕ⇒Q ϕ′. Initially,A and C are empty.
Note that “→” in Step and Consequence denotes implication.

The intuition is that the reachability rules in A can be
assumed valid, while those in C have been postulated but
not yet justified. After making progress from ϕ (at least one
derivation by Step or by Axiom), the rules in C become
(coinductively) valid and can be used in derivations by
Axiom. During the proof, circularities can be added to C
via Circularity, flushed into A by Transitivity, and used
via Axiom. The semantics of sequent S,A `C ϕ⇒Q ϕ′ (read
“S with axioms A and circularities C proves ϕ ⇒Q ϕ′”) is:
ϕ ⇒Q ϕ′ holds if the rules in A hold and those in C hold
after taking at least one step from ϕ in the transition system
(⇒T
S
,T ). Moreover, if C , ∅ then ϕ reaches ϕ′ after at least

one step on all complete paths when Q = ∀ and on at least one
path when Q = ∃. As a consequence of this definition, any
rule ϕ⇒Q ϕ′ derived by Circularity has the property that ϕ
reaches ϕ′ after at least one step, due to Circularity having
a prerequisite S,A `C∪{ϕ⇒Qϕ′} ϕ ⇒

Q ϕ′ (with a non-empty
set of circularities). We next discuss the proof rules.

Step derives a sequent where ϕ reaches ϕ′ in one step on all
paths. The first premise ensures any configuration matching



Step :
|= ϕ→

∨
ϕl⇒

∃ϕr ∈ S
∃FreeVars(ϕl).ϕl

|= ((ϕ ∧ ϕl) , ⊥Cfg) ∧ ϕr → ϕ′ for each ϕl ⇒
∃ ϕr ∈ S

S,A `C ϕ⇒
∀ ϕ′

Axiom :
ϕ⇒Q ϕ′ ∈ S ∪A ψ is FOL formula (logical frame)

S,A `C ϕ ∧ ψ⇒
Q ϕ′ ∧ ψ

Reflexivity :
·

S,A ` ϕ⇒Q ϕ

Transitivity :
S,A `C ϕ1 ⇒

Q ϕ2 S,A∪ C ` ϕ2 ⇒
Q ϕ3

S,A `C ϕ1 ⇒
Q ϕ3

Consequence :
|= ϕ1 → ϕ′1 S,A `C ϕ

′
1 ⇒

Q ϕ′2 |= ϕ′2 → ϕ2

S,A `C ϕ1 ⇒
Q ϕ2

Case Analysis :
S,A `C ϕ1 ⇒

Q ϕ S,A `C ϕ2 ⇒
Q ϕ

S,A `C ϕ1 ∨ ϕ2 ⇒
Q ϕ

Abstraction :
S,A `C ϕ⇒

Q ϕ′ X ∩ FreeVars(ϕ′) = ∅

S,A `C ∃X ϕ⇒Q ϕ′

Circularity :
S,A `C∪{ϕ⇒Qϕ′} ϕ⇒

Q ϕ′

S,A `C ϕ⇒
Q ϕ′

Figure 4: Proof system for reachability. We assume the free
variables of ϕl ⇒

∃ ϕr in the Step proof rule are fresh (e.g.,
disjoint from those of ϕ⇒∀ ϕ′). Here Q ∈ {∀,∃}.

ϕ matches the left-hand-side ϕl of some rule in S and thus,
as S is weakly well-defined, can take a step: if (γ, ρ) |= ϕ
then there is a ϕl ⇒

∃ ϕr ∈ S and a valuation ρ′ of the free
variables of ϕl s.t. (γ, ρ′) |= ϕl, and thus γ has at least one
⇒T
S

-successor generated by ϕl ⇒
∃ ϕr. The second premise

ensures that each⇒T
S

-successor of a configuration matching
ϕ matches ϕ′: if γ ⇒T

S
γ′ and γ matches ϕ then there is some

rule ϕl ⇒
∃ ϕr ∈ S and ρ : Var→ T such that (γ, ρ) |= ϕ ∧ ϕl

and (γ′, ρ) |= ϕr; then the second part implies γ′ matches ϕ′.
Axiom applies a trusted rule. Reflexivity and Transitivity

capture the closure properties of the reachability relation.
Reflexivity requires C empty to ensure that rules derived
with non-empty C take at least one step. Transitivity enables
the circularities as axioms for the second premise, since if
C is not empty, the first premise is guaranteed to take a step.
Consequence, Case Analysis and Abstraction are adapted
from Hoare logic. Ignoring circularities, these seven proof
rules are the formal infrastructure for symbolic execution.

Circularity has a coinductive nature, allowing us to
make new circularity claims. We typically make such claims

for code with repetitive behaviors, such as loops, recursive
functions, jumps, etc. If there is a derivation of the claim
using itself as a circularity, then the claim holds. This would
obviously be unsound if the new assumption was available
immediately, but requiring progress (taking at least on step
before circularities can be used) ensures that only diverging
executions correspond to endless invocation of a circularity.

Formally, we have the following result

Theorem 1. The proof system in Figure 4 is sound: if
S ` ϕ ⇒Q ϕ′ then S |= ϕ ⇒Q ϕ′ (Q ∈ {∃,∀}). Under
some mild assumptions, it is relatively complete: given an
oracle for T , if S |= ϕ⇒Q ϕ′ then S ` ϕ⇒Q ϕ′.

The proof for the all-path case is available in [12], and for
the one-path case in [47]. When considering the completeness
of program verification logics, notice that if the logic for
specifying state properties (in this case, matching logic)
is undecidable, then the entire program verification logic
(in this case, reachability logic) is undecidable. By relative
completeness, we prove the completeness of the proof system
in Figure 4 assuming we can decide any matching logic
formula in T , which means that any undecidability comes
from T and is unavoidable. This theorem generalizes similar
results from Hoare logic, but in a language-independent
setting.

4. Reachability Logic vs. Hoare Logic
Here we briefly compare reachability logic (Section 3.3) with
Hoare logic by means of a simple example, aiming to convey
the message that verification using reachability logic is not
harder than using Hoare logic, even when done manually.

4.1 The Program and the Language
Consider the following snippet, say SUM, part of a C-like
program summing up the natural numbers smaller than n:

s = 0;
while(--n) s = s + n;

Assume a simplified language whose loops cannot break/re-
turn/jump, whose integers are arbitrarily large, and without
local variables (so blocks are used for grouping only). Fig-
ure 5 shows a reduction-style executable semantics of the
needed language fragment; with the notation explained in the
caption of Figure 5, the semantics consists of ten reduction
rules between configuration terms. Each of these rules can be
regarded as a one-path reachability rule, with side conditions
as constraints on the left-hand-side pattern of the rule. For ex-
ample, the second rule for the conditional statement becomes
the following one-path reachability rule:

〈〈C[if(I) S 1 else S 2]〉code 〈σ〉state〉cfg ∧ I ,Int 0
⇒∃ 〈〈C[S 1]〉code 〈σ〉state〉cfg

Mathematical domain operations (+Int, etc.) are subscripted
with Int to distinguish them from the language constructs.



Int ::= Arbitrarily large integers
Var ::= Arbitrarily variables (identifiers)
Exp ::= Int | Exp + Exp | Exp - Exp | --Var
Stmt ::= {} | {Stmt} | Var = Exp; | Stmt Stmt

| if(Exp) Stmt else Stmt
| while(Exp) Stmt

C ::= � | C Stmt | Var = C; | C + Exp | Exp + C
| if(C)Stmt else Stmt

〈〈C[X ⇒ I]〉code 〈X 7→ I, σ〉state〉cfg

I1 + I2 ⇒ I1 +Int I2
I1 - I2 ⇒ I1 −Int I2
〈〈C[--X ⇒ I −Int 1]〉code 〈X 7→ (I ⇒ I −Int 1), σ〉state〉cfg

{} S ⇒ S {S}⇒ S
〈〈C[X = I;⇒ {}]〉code 〈X 7→ (I′ ⇒ I), σ〉state〉cfg

if(0) S 1 else S 2 ⇒ S 2
if(I) S 1 else S 2 ⇒ S 1 where I ,Int 0
while(E) S ⇒ if(E){S while(E) S} else{}

Figure 5: Reduction semantics of a simple imperative language with auto-decrement. Configurations have the form
〈〈...〉code 〈...〉state〉cfg. C ranges over evaluation contexts; X over variables; I, I′, I1, I2 over integers; σ over states; S , S 1,
S 2 over statements; and E over expressions. Context[t1 ⇒ t′1, ..., tn ⇒ t′n] is shorthand for Context[t1, ..., tn]⇒ Context[t′1, ..., t

′
n],

and t ⇒ t′ is shorthand for 〈〈C[t ⇒ t′]〉code 〈σ〉state〉cfg.

4.2 Hoare Logic Proof
The Hoare logic precondition ψpre is n =Int n ∧ n ≥Int 1, and
the postcondition ψpost is n =Int 0 ∧ s =Int n∗Int (n−Int 1) /Int2.
The variable n using italic font is introduced to capture the
original value of the program variable n, so that we can
use it to express the value of s in the post-condition (the
loop changes the value of n). A typical (over-)simplification
in hand proofs using Hoare logic is to collapse expression
constructs in the language with operations in the underlying
domain, e.g., + with +Int. Tools, however, distinguish the
two and implement translations from the former to the latter;
e.g., + may be 32-bit while +Int may be arbitrary precision,
or + may have a concurrent semantics allowing all the
interleavings of its arguments’ behaviors, etc. Since our
language is simple, we do this translation by hand on the fly,
but for clarity we use mathematical operations in formulae.

To derive the Hoare triple {ψpre} SUM {ψpost}, we need to
find a loop invariant ψinv and then use the invariant proof rule:

{ψinv ∧ E ,Int 0} S {ψinv}

{ψinv} while(E)S {ψinv ∧ E =Int 0}
(HL-While)

The loop condition is inserted within formulae. Thus, when
verifying programs using Hoare logic, expressions cannot
have side effects; programs need to be modified to isolate
side effects from computed values of expressions, which is
an inherently language-specific operation.

For example, VCC [11] expands the loop above into one
having more than a dozen statements in its translation to
Boogie [4]. To keep it human readable, we manually modify
SUM in a minimal (but adhoc) way to the equivalent SUM’
below, which can be verified using conventional Hoare logic:

s = 0;
n = n - 1;
while(n) {

s = s + n;
n = n - 1;

}

Recall the remaining Hoare logic rules required for this proof:

{ψ[E/X]} X = E; {ψ} (HL-Asgn)
{ψ1} S 1 {ψ2} {ψ2} S 2 {ψ3}

{ψ1} S 1 S 2 {ψ3}
(HL-Seq)

|= ψ′1 → ψ1 {ψ1} S {ψ2} |= ψ2 → ψ′2
{ψ′1} S {ψ′2}

(HL-Cnsq)

The proof can be derived as shown in Figure 6a. Step (1)
factors the proof using the loop invariant ψinv. First we show
using HL-Asgn twice (4,5) followed by HL-Seq (3) that ψ1
is reachable before the loop (3), which implies the invariant
holds when the loop is reached (2). To prove the invariant, we
use HL-While at (6), which generates the proof obligation
(7) for the loop body, noticing that ψ2 is logically equivalent
to ψinv ∧ n ,Int 0. The rest follows by two applications of
HL-Asgn at (8,9), followed by an HL-Seq which concludes
the proof.

4.3 Reachability Logic Proof
Let us now verify the original program SUM (with -n in
the while condition) using the generic reachability logic
instantiated with the executable semantics of the language.
Notice that we only transformed the code in Section 4.2
because the Hoare logic proof rule for while assumes there
are no side-effects in the condition.

Let S be the reachability logic system in Figure 5, where
each rule is regarded as a one-path rule as explained in Sec-
tion 4.1. The reachability logic rule stating the correctness
of SUM is ϕpre ⇒

∃ ϕpost, which can be derived as shown in
Figure 6c. Step (1) factors the proof using the loop invariant
existentially quantified in all its new (mathematical) variables.
To show that the invariant holds when the loop is reached
(2), we “execute” the initial pattern ϕpre with the operational
semantics rule of assignment (4), reaching pattern ϕ1, which
implies (in matching logic) the existentially quantified invari-
ant. To prove the existentially quantified invariant, thanks to



HL-Cnsq

HL-Seq

HL-Asgn
{ψpre} s=0; {ψpre ∧ s =Int 0}

(4)
{ψpre ∧ s =Int 0} n=n-1; {ψ1}

(5) HL-Asgn

{ψpre} s=0;n=n-1; {ψ1}
(3)

{ψpre} s=0;n=n-1; {ψinv}
(2)

{ψ2} s=s+n; {ψ3}
(8)
{ψ3} n=n-1; {ψinv}

(9) HL-Asgn, HL-Cnsq

{ψ2} s=s+n;n=n-1; {ψinv}
(7) HL-Seq

{ψinv} LOOP’ {ψpost}
(6) HL-While, HL-Cnsq

{ψpre} SUM’ {ψpost}
(1) HL-Seq

(a) Hoare logic proof of SUM’

ψpre ≡ n =Int n ∧ n ≥Int 1
ψpost ≡ n =Int 0 ∧ s =Int n ∗Int (n −Int 1) /Int2
ψ1 ≡ n =Int n −Int 1 ∧ n ≥Int 1 ∧ s =Int 0
Σ

j
i ≡ ( j +Int i) ∗Int ( j −Int i +Int 1) /Int2

ψinv ≡ n ≥Int 0 ∧ s =Int Σ
n−Int1
n+Int1

LOOP’ ≡ while(n){s = s + n; n = n - 1;}
ψ2 ≡ n >Int 0 ∧ s =Int Σ

n−Int1
n+Int1

ψ3 ≡ n >Int 0 ∧ s =Int Σ
n−Int1
n

(b) Notations for Hoare logic proof

Consequence

Axiom
S, ∅ `∅ ϕpre ⇒

∃ ϕ1
(4)

S, ∅ `∅ ϕpre ⇒
∃ ∃n′.ϕinv

(2)

Axiom
S, ∅ `{µ} ϕinv ⇒

∃ ϕ2
(7)

Transitivity

(Axiom | Transitivity)+

.

.

.

S, {µ} `∅ ϕ2 ∧ n′>Int 1⇒∃ ϕ3
(11)
S, {µ} `∅ ϕ3 ⇒

∃ ϕpost
(12) Axiom(µ)

S, {µ} `∅ ϕ2 ∧ n′>Int 1⇒∃ ϕpost
(9)

.

.

.

S, {µ} `∅ ϕ2 ∧ n′≤Int 1⇒∃ ϕpost
(10) (Axiom | Transitivity)+

S, {µ} `∅ ϕ2 ⇒
∃ ϕpost

(8) Case Analysis

S, ∅ `{µ} ϕinv ⇒
∃ ϕpost

(6) Transitivity

S, ∅ `∅ ϕinv ⇒
∃ ϕpost

(5) Circularity

S, ∅ `∅ ∃n′.ϕinv ⇒
∃ ϕpost

(3) Abstraction

S, ∅ `∅ ϕpre ⇒
∃ ϕpost

(1) Transitivity

(c) Reachability logic proof of SUM

ϕpre ≡ 〈〈SUM〉code 〈n 7→ n, s 7→ s〉state〉cfg ∧ n ≥Int 1
ϕpost ≡ 〈〈〉code 〈n 7→ 0, s 7→ n ∗Int (n −Int 1) /Int2〉state〉cfg

LOOP ≡ while(--n){ s = s + n; }
ϕ1 ≡ 〈〈LOOP〉code 〈n 7→ n, s 7→ 0〉state〉cfg ∧ n ≥Int 1

µ ≡ ϕinv⇒
∃ϕpost

ϕinv ≡ 〈〈LOOP〉code 〈n 7→ n′, s 7→ Σ
n−Int1
n′ 〉state〉cfg ∧ n′ ≥Int 1

IF ≡ if(--n){s = s + n; LOOP} else {}
ϕ2 ≡ 〈〈IF〉code 〈n 7→ n′, s 7→ Σ

n−Int1
n′ 〉state〉cfg ∧ n′ ≥Int 1

ϕ3 ≡ 〈〈LOOP〉code 〈n 7→n′−Int 1,s 7→Σ
n−Int1
n′−Int1

〉state〉cfg ∧ n′>Int 1

(d) Notations for reachability logic proof

Figure 6: Hoare logic and reachability logic proofs of SUM. The numbers appearing in the side of each proof steps are not part
of the proofs, but only references to be used in the explanation of the proofs in Section 4.2 and 4.3.



Abstraction we first eliminate the existential quantifier (3)
and then, expecting a circular behavior of the loop, we add the
proof obligation as a circularity (5). The rest is just symbolic
execution of the loop body using the executable semantics
and giving priority to the circularity when it matches. Specifi-
cally, the loop is unrolled using the executable semantics of
while (7), then a case analysis is initiated on whether the
value held by n is larger than 1 or not (8), and ϕpost is indeed
reached on both paths (9,10). The circularity is used on the
positive branch only (12), as expected. In this proof we do not
mention the Consequence steps that change a formula into an
equivalent formula (i.e. ϕ2 into ϕ2 ∧ (n′ ≤Int 1 ∨ n′ >Int 1)).

4.4 Discussion
Forty-five years of Hoare logic cannot be taken lightly. We
do not expect the reader to immediately agree with us that the
reachability logic proof above is more intuitive than the Hoare
logic proof. We do, however, urge the reader to consider
the main practical benefits of the reachability logic proof: it
used the executable semantics of the programming language
unchanged and only a fixed set of language-independent
proof rules, without requiring any other semantics to be
crafted or the program to be modified in order to be verifiable.

These benefits cannot be taken lightly either, especially
when certifiable verification is a concern. The current state
of the art in certifiable verification is to define an alterna-
tive Hoare logic of the language (or a corresponding VC
generator) and prove its soundness w.r.t. the trusted opera-
tional semantics; similarly, the transformed program needs
to be in the correct relationship with the original program
(the transformed program may lose behaviors) also using the
operational semantics. These tasks are quite tedious when
real-world languages are concerned. Besides, they need to be
maintained as the language evolves, or as bugs are found and
fixed in the operational semantics, or even as the operational
semantics is refactored. For example, the semantics of C [25]
has over 2,500 rules and according to the repository history
it has been updated at a rate of two commits per day over the
last 3 years. In this light, one can regard the reachability logic
proof system as an effective mechanism to turn an operational
semantics into a corresponding axiomatic semantics.

5. Implementation
We discuss our novel implementation of the K verification
infrastructure, depicted in Figure 1, based on the language-
independent proof system in Figure 4. Our framework takes
an operational semantics defined in K [44] as a parameter and
uses it to automatically derive program correctness properties.
In other words, our verification infrastructure automatically
generates a program verifier from the semantics, which is
correct-by-construction w.r.t. the semantics. As discussed in
Section 3.2, we view a semantics as a set of reachability rules
l ∧ b ⇒∃ r. A major difficulty in a language-independent
setting is that standard language features relevant to verifica-

tion, like control flow or memory access, are not explicit, but
rather implicit (defined through the semantics).

The generated program verifier proves a set of user pro-
vided reachability rules, representing the program correctness
specifications of the code being verified, typically one for
each recursive function and loop. For the sake of automation,
the rules have the more restrictive form π ∧ ψ ⇒∀ π′ ∧ ψ′,
with π ∧ ψ and π′ ∧ ψ′ conjunctive patterns. A conjunctive
pattern is a formula π ∧ ψ with π a program configuration
term with variables, and ψ a formula without any configura-
tion terms. We use all-path rules for specifications to capture
some of the local non-determinism (e.g. the non-deterministic
C expression evaluation order). Section 2 shows examples
of specifications. As discussed there, we use conventions
already supported by K to have more compact specifications.

The generated program verifier is fully automated. The
user only provides the program correctness specifications.
The verifier uses the operational semantics for symbolic exe-
cution and performs matching logic reasoning automatically.
Specifically, to prove a set C of rules between conjunctive
patterns, it uses the following algorithm to derive

S, ∅ `C ϕ⇒
∀ ϕ′

for each ϕ⇒∀ ϕ′ ∈ C:

1 Q := successors(ϕ)
2 if Q is empty and 6|= ϕ→ ϕ′ then fail
3 while Q not empty
4 pop ϕc from Q
5 if |= ϕc → ϕ′ continue
6 else if ∃σ with |= ϕc → σ(ϕl) for ϕl ⇒

∀ ϕr ∈ C

7 add σ(ϕr) ∧ frame(ϕc) to Q
8 else
9 Q′ := successors(ϕc)

10 if Q′ is empty then fail
11 add all Q′ to Q

where successors(ϕ) returns, as a set, the disjunction of
conjunctive patterns representing the one-step successors of ϕ
(see Section 5.1), σ is a substitution, and frame(π∧ψ) returns
ψ. The algorithm uses a queue Q of conjunctive patterns,
which is initialized with the one-step successors of ϕ (lines
1-2). At each step the main loop (lines 3-11) processes a
conjunctive pattern ϕc from Q. If ϕc implies the postcondition
ϕ′ then verification succeeds on this execution path (line 5). If
ϕc matches the left-hand-side of a specification rule in C then
the respective rule is used to summarize its corresponding
code (lines 6-7). Finally, if none of the cases above hold,
add all one-step successors of ϕc to Q (lines 9-11). Using
a specification is preferred over the operational semantics.
If there are no successors (lines 2 and 10), the verification
fails, as some concrete configurations satisfying the formula
may not have a successor (e.g. a dereferenced pointer may be
NULL in C). Our algorithm is incomplete, i.e., fail means
that the specification cannot be verified successfully, not that
it is violated by the code. Each pattern is simplified using



function/abstraction definitions and lemmas before being
added to Q.

The algorithm automates the proof system in Figure 4.
Implementing the computation of multiple steps of symbolic
execution across multiple paths with a queue corresponds to
Transitivity and Reflexivity. Computing successors (line 1
and line 9) corresponds to Step, and splitting the subsequent
disjunction to Case Analysis. Finishing an execution path
(line 5) corresponds to Consequence. Using a specification
rule (lines 6-7) corresponds to Consequence, Abstraction,
and Axiom. Since Q is initialized with the successors of ϕ,
a step of Transitivity already moved C toA. Consequence
and Abstraction simplify a pattern before adding it to Q.
We use Circularity on the set C before the beginning of the
algorithm. This is sound because in line 1, we compute the
successors of ϕ outside the while loop, which amounts
to Step + Transitivity, and then we use the rules in C with
Axiom in the body of the loop in line 6. Thus, we can conclude
that all the rules in C hold.

Our verification infrastructure is implemented in Java, and
uses Z3 [15]. It consists of approximately 30,000 non-blank
lines of code, and it took about 2.5 man-years to complete.

5.1 Symbolic Execution
Language-independent symbolic execution is complicated
by the absence of explicit control flow statements, which
are language specific. We handle control flow statements
by noticing they are generally unifiable with the left-hand-
sides of several semantics rules. Consider the C code
“if (b) x = 1; else x = 0;”. It does not match
the left-hand-side of any of the two semantics rules of if
(they require the condition to be either the constant true or the
constant false [18]), but it is unifiable with the left-hand-sides
of both rules. We achieve symbolic execution by perform-
ing narrowing [2] (i.e., rewriting with unification instead of
matching). When using the semantics rules, taking steps of
rewriting on a ground configuration yields concrete execution,
while taking steps of narrowing yields symbolic execution.

We compute successors(π ∧ ψ) using unification modulo
theories. We distinguish several theories (e.g. booleans, in-
tegers, sequences, sets, maps, etc) that the underlying SMT
solver can reason about. Specifically, we unify π∧ψ with the
left-hand-side of a semantics rule πl ∧ ψl. We begin with the
syntactic unification of π and πl. Upon encountering corre-
sponding subterms (π′ in π and π′l in πl) which are both terms
of one of the theories above, we record an equality π′ = π′l
rather than decomposing the subterms further (if one is in a
theory, and the other one is in a different theory or is not in
any theory, unification fails). If this stage is successful, we
end up with a conjunction ψu of equalities, some having a
variable in one side and some with both sides in one of the
theories. Then we check the satisfiability of ψ∧ψu ∧ψl using
the SMT solver. If it is satisfiable, then πr ∧ ψ ∧ ψu ∧ ψl ∧ ψr

is a successor of π ∧ ψ, where πr ∧ ψr is the right-hand-side
of the semantics rule. Then successors is the disjunction of

ϕr∧ψu∧ψ∧ψl over all rules in S and all unification solutions
ψu. While in general this disjunction may not be finite [12], in
practice it is finite for the examples we considered. Intuitively,
“collecting” the constraints ψu∧ψl∧ψr is similar to collecting
the path constraint in traditional symbolic execution (but is
done in a language-generic manner). For instance, the if
case above, results in collecting the constraints b = true
and b = false. Notice that |= ϕ ∧ ϕl , ⊥Cfg is satisfiable iff
ϕ and ϕl are unifiable. Thus, we are sound by Step.

Several optimizations improve performance; we mention
two. First, as the semantics of a real-world language consists
of thousands of rules, the verifier uses an indexing algorithm
to determine which rules may apply. Second, the verifier
caches partial unification results, e.g., for each semantics rule,
the verifier caches pairs of terms (t1, t2) that fail to unify with
t2 a subterm of the left-hand-side of the rule.

5.2 Matching Logic Prover
Matching logic reasoning is used in three cases in our algo-
rithm: (1) to finish the proof (line 5), (2) to use a specification
rule to summarize a code fragment (line 6), and (3) to simplify
a pattern (before adding it to Q).

As discussed in Section 3.1, we use recursively-defined
heap abstractions to specify the correctness of programs
manipulating lists and trees in the heap. Such definitions
exploit the recursive nature of the data-structures , e.g.,

tree(x, node(n, tl, tr)) = ∃yz.x 7→ [n, y, z], tree(y, tl), tree(z, tr)
tree(0, leaf) = emp

There is an extensive literature on such recursive definitions,
especially in the context of separation logic [33, 35, 41].

We employ two heuristics. The first is similar to natural
proofs [33, 41]. We unfold a recursive definition during
symbolic execution when we add conjunctive pattern π ∧ ψ
to Q if unfolding does not introduce a disjunction (i.e., ψ
guarantee that only one of the cases in the definition holds).
For example, in C, if ψ implies the head pointer p of a tree
is NULL, then we conclude the tree is empty. If ψ implies p is
not NULL, then we conclude p points to an object containing
pointers to the left and right subtrees. Successful unfolding
occurs at the start of symbolic execution, after a split (e.g.
caused by if), or after using a specification rule (line 7).
Unfolding makes a pattern more concrete, thus enabling
operational semantics rules to apply. We similarly unfold
recursive definitions on the right-hand-side of an implication.
Unfolding is language-independent, as it is not triggered by
memory accesses or other language-specific features.

While the above heuristic works on tree manipulating
programs, it fails on list segment manipulating programs, as
a list segment can be unfolded at both ends. We solve this by
adapting the folding axioms proposed in [40] to work with
data, and using them as additional lemmas for list segments
on the left-hand-side of an implication, e.g.,

lseg(x, y, α), lseg(y, 0, β) = lseg(x, 0, α · β)



Folding and unfolding are implemented by rewriting using
the same infrastructure used for symbolic execution. The
recursive definitions and the lemmas are all given as K rules.

As shown in Section 2, we use equationally constrained
function and predicate symbols (like bst and tree_keys); e.g.,

height(node(_, tl, tr)) = 1 + max(height(tl), height(tr))
height(leaf) = 0
height(_) ≥ 0 = true

The first two define the height of a tree, while the third is a
lemma. These equations are given as K rules, and are used in
two ways: to simplify a formula by rewriting (oriented from
left to right), and to be added in Z3 (see Section 5.3).

5.3 Integration with Z3
We use Z3 [15] to discharge the formulae that arise during
matching logic reasoning (required by Consequence and
Step). These formulae involve the following theories: integer,
bitvector, set, sequence, and floating-point. We chose Z3
because of its very good performance, and because it offers
features that are not part of the SMT-LIB standard, including
variables instantiation patterns for universally quantified
axioms, and mapping functions over arrays. While some
of the formulae are not in decidable theories, in practice Z3
successfully checks them.

As discussed in Section 5.2, the formulae contain equa-
tionally constrained symbols. We encode these in Z3 as un-
interpreted functions combined with assertions of the form
“∀X. t = t′”. Z3 handles such assertions efficiently using E-
matching [14]. By default, we specify the left-hand-side of
these equations as the variables instantiation pattern, which
in effect makes the equations only apply from left to right.
This heuristic is effective in keeping the number of terms
small. For a select few equations, like the ones for the sorted
predicate for sequences, we wrote the patterns by hand.

Sets are one of the most important theories that we offer
in our verifiers. We handle the set theory as proposed in [16].
We encode the sets themselves as arrays from the elements to
true or false. Then, we encode the set operations as mapping
of boolean functions over the arrays, and set membership as
array lookup. The array map feature is only available in Z3,
and is not part of the SMT-LIB standard. This results in a
decidable theory for sets.

Unfortunately, this set encoding does not work well with
the encoding of sequence theory symbols as equationally
constrained uninterpreted functions. This case arises during
the verification of the sorting examples. For this reason, we
developed an encoding of sets using uninterpreted functions
and universally quantified assertions. This encoding does not
handle the set theory in a decidable way, but in practice it
works with the sequence theory.

JavaScript verification generates floating-point constraints.
Z3 has basic support for floating-point, but it does not in-
tegrate well with other theories. For this reason, we ab-
stracted floating-point values to values in a partial-order rela-

tion, when the values only occur in comparisons and equali-
ty/inequality checks. This abstraction is used on the keys of
the search trees or the values in the sorted lists.

For these reasons, we have different SMT encodings for
the different programs we are verifying. We delegate to the
user to choose which encodings are best suited for a given
program.

5.4 Example
Let us discuss how this algorithm derives the reachability
logic proof of the correctness of the SUM program in Fig-
ure 6c. Note that the algorithm derives the all-path version
of the rule instead of the one-path version derived in Fig-
ure 6c. The two rules specify the same property, since IMP is
deterministic.

In this case, C is the set {ϕpre ⇒
∀ ϕpost, ϕinv ⇒

∀ ϕpost}.
First, let us run the algorithm on ϕpre ⇒

∀ ϕpost. In line
1, successors(ϕpre) returns ϕ1 (corresponding to (4) in Fig-
ure 6c). Since Q is non-empty, we enter the body of the
while loop, and we set ϕc to be ϕ1 (the single element in Q).
The check |= ϕ1 → ϕpost in line 5 fails due to the syntactic
differences in the code cell, without calling Z3. Then we con-
tinue to line 6, where the check |= ϕ1 → σ(ϕinv) succeeds for
σ = {n′ 7→ n} (proof step (2) in Figure 6c), and ϕpost∧n ≥Int 1
is added to Q in line 7. In this step we use Z3 to check that
n′ = n→ Σ

n−Int1
n′ = 0 is valid; specifically, Z3 proves that the

negation of the formula is unsatisfiable. We go through the
while loop again, and this time the check in line 5 succeeds
(without use of Z3), and the algorithm terminates successfully
(corresponding to (1,3) in Figure 6c).

Next, we run the algorithm on ϕinv ⇒
∀ ϕpost (correspond-

ing to finding the sub-proof tree rooted at (5) in Figure 6c).
Like before, we compute successors(ϕinv) in line 1, which
returns ϕ2 (corresponding to (7) in Figure 6c). We enter
the while loop, and this time both the checks in lines 5
and 6 fail, so we proceed to line 9. Here, we compute the
successors(ϕ2), which is

〈〈if(n′ −Int 1){s = s + n; LOOP} else {}〉code

〈n 7→ n′, s 7→ Σ
n−Int1
n′ 〉state〉cfg ∧ n′ ≥Int 1

At the next iteration of the loop, and we reach line 9 again.
This time, a proper step of narrowing is performed, and
we have the following two successors added to Q (roughly
speaking, corresponding to finding the sub-proof trees rooted
at (9) and (10), respectively, in Figure 6c):

〈〈{s = s + n; LOOP}〉code

〈n 7→ n′, s 7→ Σ
n−Int1
n′ 〉state〉cfg ∧ n′ ≥Int 1 ∧ n′ −Int 1 , 0

and

〈〈{}〉code

〈n 7→ n′, s 7→ Σ
n−Int1
n′ 〉state〉cfg ∧ n′ ≥Int 1 ∧ n′ −Int 1 = 0

We continue iterating through the loop in a similar way
going through lines 9-11, where each formula has exactly



one successor. Eventually, we reach ϕ3 (corresponding to
(11) in Figure 6c), at which point we go through lines 6-7
(corresponding to (12) in Figure 6c). Finally, we reach twice
formulae for which the check in line 5 succeeds, and the
algorithm terminates successfully. The successful checks in
lines 5 and 6 make calls to Z3 with similar formulae as the
one shown above.

6. Evaluation
We evaluate the K verification infrastructure by instantiat-
ing it with four different semantics, thus obtaining program
verifiers for four different languages: KernelC (a simple
toy C-like language), C, Java, and JavaScript (complex real-
world languages). Our goal is to validate our hypothesis that
building program verifiers by using K operational semantics
and its verification infrastructure is effective both in terms
of verification capabilities and tool building effort. To eval-
uate this hypothesis, first we implemented all the features
required to verify the programs in Table 1 with KernelC:
symbolic execution, reasoning with heap abstractions, inte-
gration with Z3, etc. Then we instantiated our framework
with the off-the-shelf semantics of C11 [18, 25], Java 1.4 [8],
and JavaScript 5.1 [38] to obtain corresponding program ver-
ifiers. We evaluated these verifiers by proving the correctness
of the same programs in Table 1, but written in C, Java, and
JavaScript. The implementation and the experiments are avail-
able as part of theK framework at http://github.com/
kframework/k/wiki/Program-Verification.

The semantics we use are the most complete to date for
their languages (see Table 2 for their size). As we men-
tioned before, given the complexity of real-world languages,
we would like to separate the tricky language-specific fea-
tures that are orthogonal to the verification process from
the language-independent issues that make program verifi-
cation hard. We achieve this by deferring to the semantics
to handle the language-specific features (automatic promo-
tions of integers in C, type checking, function call resolution,
etc.). The K verification infrastructure handles the language-
independent reasoning (heap-allocated mutable data struc-
tures, integers/bit-vectors/floating-points, etc.).

6.1 Verification Experiments
Here we discuss how effective in terms of proving capabilities
it is to build program verifiers using K operational semantics.
To this end, we have verified using our approach a number
of challenging heap manipulating programs implementing
the same data structure operations in KernelC, C, Java,
and JavaScript. These programs have been used before to
evaluate verification approaches, e.g., in [34, 35, 39, 47]. Our
goal here is to show that we can also verify such programs
at comparable performance, but in a language-independent
setting. We conducted the experiments on a machine with
Intel Core i7-4960X CPU 3.60GHz and DDR3 RAM 64GB.

Our examples fall in two categories. (1) Singly-linked list
manipulating programs, including implementations of com-
mon sorting algorithms. For each sorting function, we prove
that the returned sequence is indeed sorted and has exactly the
same elements as the original sequence. (2) Implementations
of binary search tree, AVL tree, red-black tree (RBT), and
Treap data-structure operations. For each function, we prove
that it maintains the data-structure invariants and that the set
of elements is as expected.

Table 1 summarises our experiments. For KernelC, which
is idealized for verification, proving the implications required
by Consequence (shown in the Reasoning column) dominates
the total verification time. C, Java, and JavaScript are com-
plex languages, so the semantics-based symbolic execution
(shown in the Execution column) dominates the verification
time. Note that since the programs implement the same data
structure operations in different languages, the complexity
of implications required by Consequence tends to be simi-
lar. Thus, the complexity of the operational semantics is the
most important factor contributing to the difference in the
verification times reported. As expected, since C has the most
complex operational semantics, the times for C are the largest.
The number of queries of logical reasoning for C and Java
is higher than for JavaScript because of 32-bit integer range
constraints, while the time spent on each query is similar
along the different languages, reflecting that the reasoning is
language-independent. Furthermore, each step of symbolic
execution for JavaScript is much smaller than for C and Java,
because the JavaScript semantics is more fine-grained.

The AVL and RBT insert and delete programs take con-
siderably longer than the other programs because some of the
auxiliary functions (like balance, rotate, etc) are not given
specifications and thus their bodies are being inlined, result-
ing in a larger number of paths to analyze. To put this in
perspective, VCDryad [39], a state-of-the-art separation logic
verifier for C build on top of VCC, takes 260s to verify only
the balance function in AVL, while it takes our generic in-
frastructure instantiated with the C semantics 210s to verify
AVL insert (including balance). In general, we believe Table 1
suggests that our approach is practical and competitive with
the state-of-the-art on such data-structures.

6.2 Development Cost
We discuss how cost effective in terms of tool development it
is to build program verifiers using K operational semantics
and our verification infrastructure. Recall that the semantics
of C, Java, and JavaScriptwere developed as separate projects,
independently from the verification infrastructure.

Table 2 shows the development effort of our approach.
The language-specific effort consists of familiarizing with the
semantics in order to be able to write the correctness specifi-
cations as reachability rules (like the ones in Section 2), and
of making changes to the semantics. Most of changes to the
semantics are bug fixes (see Section 6.3), but some are per-
formance improvements or simplifications. The development

http://github.com/kframework/k/wiki/Program-Verification
http://github.com/kframework/k/wiki/Program-Verification


KernelC C Java JavaScript
Programs Execution Reasoning Execution Reasoning Execution Reasoning Execution Reasoning

Time #Step Time #Query Time #Step Time #Query Time #Step Time #Query Time #Step Time #Query
BST find 0.6 192 1.2 95 10.4 1,028 3.6 246 1.9 322 2.8 244 4.5 1,736 1.8 93
BST insert 0.8 336 2.9 160 23.0 2,481 7.2 414 4.1 691 4.5 342 5.4 3,394 2.8 158
BST delete 1.4 582 5.6 420 55.1 4,540 16.6 938 9.8 1,274 15.1 1,125 15.6 5,052 5.6 373
AVL find 0.6 192 1.2 95 9.9 1,028 3.1 214 2.2 322 2.7 244 4.5 1,736 1.9 93
AVL insert 6.2 1,980 42.1 1,133 210.7 12,616 70.6 1,865 42.4 3,753 62.8 2,146 102.5 26,977 32.5 1,221
AVL delete 9.5 2,933 45.4 1,758 514.8 26,003 118.9 3,883 122.2 8,144 149.4 4,866 184.3 38,591 55.3 2,233
RBT find 0.6 192 1.1 95 11.5 1,064 3.0 214 2.1 322 2.9 244 4.9 1,736 1.9 93
RBT insert 7.6 2,331 48.1 1,392 722.0 30,924 181.8 4,394 39.9 4,240 75.7 2,547 84.9 28,082 29.6 1,381
RBT delete 10.6 3,891 33.7 2,033 1593.8 50,389 308.3 15,429 95.8 8,312 75.4 4,460 144.2 51,356 39.4 2,009
Treap find 0.6 200 1.4 118 11.2 1,064 3.2 214 2.0 322 2.9 244 4.6 1,736 1.9 116
Treap insert 1.4 753 4.5 247 52.4 4,954 15.3 724 12.7 1,469 10.4 563 13.7 7,738 5.2 243
Treap delete 2.0 831 9.4 509 73.9 5,512 16.5 656 12.0 1,694 16.4 1,021 24.8 8,333 8.4 460
List reverse 0.4 142 0.3 21 6.6 815 4.8 76 1.5 222 2.6 46 5.0 1,162 0.5 20
List append 0.4 171 0.5 45 7.4 909 7.4 128 1.8 239 5.5 106 4.5 1,392 0.8 46
Bubble sort 0.9 391 26.8 190 28.4 2,401 38.0 357 3.4 589 35.4 345 5.6 2,688 25.7 145
Insertion sort 1.1 468 24.5 300 26.6 2,555 35.3 451 4.1 731 27.0 371 8.3 3,119 36.5 213
Quick sort 1.1 604 31.6 269 31.0 3,601 48.2 518 7.1 958 40.0 413 15.0 5,046 33.1 252
Merge sort 1.7 970 55.0 478 81.6 6,589 89.0 1,070 14.1 1,566 72.9 737 22.8 7,021 43.2 480
Total 47.7 17,159 335.2 9,358 3470.5 158,473 970.6 31,791 379.3 35,170 604.5 20,064 654.9 196,895 326.3 9,629

Table 1: Summary of verification experiments: ‘Execution’ shows time (seconds) and number of operational semantic steps for
symbolic execution (Section 5.1); ‘Reasoning’ shows time (seconds) and number of Z3 queries for reasoning (Section 5.2 &
5.3).

C Java JavaScript
Semantics development (months) 40 20 4
Semantics size (#rules) 2,572 1,587 1,378
Semantics size (LOC) 17,791 13,417 6,821
Language-specific effort (days) 7 4 5
Semantics changes size (#rules) 63 38 12
Semantics changes size (LOC) 468 95 49
Specifications 36 31 31
Abstractions 6 6 6
Function definitions 14 14 14
Lemmas 7 7 7

Table 2: The development costs

effort scales with the language complexity. The effort for C
is considerably larger than for Java and JavaScript due to the
low level complexity of C. Overall, the numbers in Table 2
validate our hypothesis that program verification based on
operational semantics and the K verification infrastructure is
cost effective in terms of development effort.

For comparison, the state-of-the-art is to define a translator
to an intermediate verification language, like Boogie, or to
define a verification condition (VC) generator. For example,
the VCC translator from C to Boogie consists of approxi-
mately 5000 lines of F# [1]. We believe that writing such a
translator takes considerably more effort than we reported
for our approach in Table 2 (we do not include the time to
define the semantics into this comparison, since we assume
the semantics already exist, and they serve other purposes
as well). Moreover, we believe that one would have more
confidence in an operational semantics to handle the tricky

details of complex languages than in a translation or a VC
generator, for two reasons. First, an operational semantics
is more amenable to visual inspection, as it is written in a
domain-specific language for defining semantics. Second, an
operational semantics is executable and can be thoroughly
tested. While this does not guarantee the absence of bugs (see
Section 6.3), it greatly reduces their occurrence.

Even if a semantics is not already available, we believe
that developing an operational semantics has an important
advantage over building a translator or a VC generator: the
semantics is used not only for verification, but for other
purposes as well, so overall the semantics development cost
is amortized. For example, the JavaScript semantics was used
for bug finding in browsers [38].

Regarding number of annotations, our approach is compa-
rable to the state-of-the-art language-specific approaches that
do not infer invariants (VCC, Frama-C). The user provides
one specification for each recursive function and loop. The
user also provides the definitions for heap abstractions and
auxiliary functions used in specifications. The user does not
provide anything similar to ghost code or hints for the verifier.
The user may need to provide additional lemmas and those
lemmas apply to a class of programs rather than one particu-
lar program (e.g., the lemmas for list segments in Section 5.2
are shared by all sorting-related programs in all languages).

6.3 Operational Semantics Bugs
We found bugs in all the three operational semantics used
for verification, despite the fact that these semantics are
thoroughly tested on thousands of programs [8, 18, 25, 38].



The main source of bugs is the unintended non-determi-
nism in the semantics. A semantics models a non-determinis-
tic feature by having multiple rules that can apply at the
same time. Such a feature is the expression evaluation order
in C: “f() + g()” may call f() first and g() second or
g() first and f() second. As a result, only a fraction of
the possible behaviors are observed under testing. During
symbolic execution, the K verifier considers all the rules that
can apply (according to Step in Figure 4). This revealed that
each semantics contained unintended non-determinism: pairs
of rules where the semantics developers intended for one rule
to always apply before the other, but in fact both rules can
apply simultaneously. Applying the rules in the other order
causes an incorrect result. We also found other kinds of bugs,
mostly caused by incorrect side conditions of the semantics
rules, or incorrect assumptions about the configuration.

We proposed fixes for the bugs we found and the se-
mantics’ authors accepted them. This indicates the existing
methodology to validate semantics needs improvement.

7. Related Work
The program verification literature is rich. We only discuss
work close to ours, omitting theoretical work that has not been
applied to large languages or work on interactive verification.

A popular approach to building program verifiers for real-
world languages is to translate to an IVL and do verification at
the IVL level. This results in some re-usability, as the VC gen-
eration and reasoning about state properties are implemented
only once, at the IVL level. However, the development of
translators is both time consuming and susceptible to bugs.
Boogie [4] is a popular IVL integrated with Z3. There are
several verifiers built on top of Boogie, including VCC [11],
HAVOC [28], Spec# [5], Dafny [30], and Chalice [31]. VC-
Drayd [39] is a separation logic based verifier built on top of
VCC. Why3 [21] is another IVL, also integrated with SMT
solvers (and other provers). Tools built on top of Why3 in-
clude Frama-C [21] and Krakatoa [20]. There are many other
practical VC generation based tools (with or without an IVL),
including Verifast [27] and jStar [17]. In contrast, we use ex-
isting operational semantics directly for verification, without
any translation to IVLs or language-specific VC generation.

Recent work proposes translating to a set of Horn clauses
instead of an IVL [23]. A semantics based-approach to
translation to Horn clauses for a fragment of C is presented
in [13], but it is unclear if the approach is generic enough
to scale to the entire C or to other real-world languages. An
approach for using the interpreter source code as a model of
the language in for symbolic execution is proposed in [9], but
it is used to generate tests, not verify programs.

We fully share the goal of the mechanical verification
community to reduce the correctness of program verification
to a trusted formal semantics of the target language [3, 22,
26, 32, 36], although our methods are different. Instead of
a framework to ease the task of giving multiple semantics

of the same language and proving systematic relationships
between them, we advocate developing only one semantics,
operational, and offering an underlying theory and frame-
work with the necessary machinery to achieve the benefits of
multiple semantics without the costs. Bedrock [10] is a Coq
framework which uses computational higher-order separation
logic and supports semi-automated proofs. It can serve as an
IVL, and be the target of translations from other languages
which can be certified in Coq based on their operational se-
mantics. Our approach works with the operational semantics
directly, and thus does not need any such proofs.

Dynamic logic [24] adds modal operators to FOL to embed
program fragments within specifications, but still requires
language-specific proof rules (e.g., invariant rules). KeY [6]
offers automatic verification for Java based on dynamic logic.
Matching logic also combines programs and specifications
for static properties, but dynamic properties are expressed in
reachability logic which has a language-independent proof
system that works with any operational semantics.
Operational semantics-based verification. A first version
of a language-independent proof system for reachability is
given in [46], and [45] shows a mechanical translation of
Hoare logic proof derivations for IMP to it. The Circularity
proof rule was introduced in [47]. Support for operational
semantics using conditional rules is introduced in [43], and
support for non-determinism in [12]. These previous results
are mostly theoretical, with MatchC a prototype hand-crafted
for KernelC mixing language-independent reasoning with
the operational semantics of KernelC.

8. Conclusion, Limitations, Future Work
This paper introduces a language-independent verification
infrastructure that takes as input an operational semantics and
automatically turns it into a correct-by-construction program
verifier. The framework is instantiated with the semantics of
C, Java, and JavaScript, which were developed independently.
The generated verifiers successfully check the functional
correctness of challenging programs that implement the same
algorithms in all three languages.

The language-independent verification approach presented
in this paper comes with several limitations. (1) Performance
of symbolic execution depends on the granularity of the
semantics. In our evaluation, the more granular semantics of
JavaScript is twice as slow as that of Java. (2) Specifications
are reachability rules between program configurations, which
can be verbose. The reachability rules could be generated
from in-code annotations (pre/post conditions, loop invariants,
class invariants, etc), the same way that Hoare triples can
be generated from in-code annotations. However, our tool
does not support this yet. (3) Non-determinism is handled by
exhaustive interleaving. This works for the non-deterministic
evaluation of C expressions, but is currently infeasible for
threads. (4) The heap abstractions currently need to be defined
for each language separately, leading to boilerplate code.



Currently, our trusted code base is the operational seman-
tics of the language, the K verification infrastructure, and
Z3. The proof system has been formalized in Coq previously.
There is ongoing work on implementing a Coq backend for
K (support for embedding a K definition in Coq). Once com-
pleted, it would be easy to make the verification infrastructure
generate a Coq proof certificate containing the proof steps
used, and thus reduce our trusted code base to only the lan-
guage definition (given as a K semantics).

Several future directions look interesting. In this work
we have focused on data-structure verification. We plan to
look at a larger, real-world code base next. There are no
conceptual issues caused by our language-independent proof
system that need addressing. However, there are several
areas where we plan to make improvements. First, we will
add support for compact and intuitive in-code annotations
(similar to VCC and other program verifiers). Further, we
will look into using invariant inference techniques to reduce
the annotation burden on the user. Finally, we will connect
our infrastructure with the Coq proof assistant in order to
allow the user to interactively prove the formulae that our
verification infrastructure cannot prove fully automatically.
Also, all the programs we verified are single-threaded. We
would like to extend our framework to support modular
reasoning about multi-threaded programs.
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