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Abstract
We propose natural proofs for reasoning with programs that ma-
nipulate data-structures against specifications that describe the
structure of the heap, the data stored within it, and separation and
framing of sub-structures. Natural proofs are a subclass of proofs
that are amenable to completely automated reasoning, that pro-
vide sound but incomplete procedures, and that capture common
reasoning tactics in program verification. We develop a dialect of
separation logic over heaps, called Dryad, with recursive defini-
tions that avoids explicit quantification. We develop ways to reason
with heaplets using classical logic over the theory of sets, and de-
velop natural proofs for reasoning using proof tactics involving
disciplined unfoldings and formula abstractions. Natural proofs
are encoded into decidable theories of first-order logic so as to be
discharged using SMT solvers.

We also implement the technique and show that a large class of
more than 100 correct programs that manipulate data-structures are
amenable to full functional correctness using the proposed natural
proof method. These programs are drawn from a variety of sources
including standard data-structures, the Schorr-Waite algorithm for
garbage collection, a large number of low-level C routines from the
Glib library and OpenBSD library, the Linux kernel, and routines
from a secure verified OS-browser project. Our work is the first that
we know of that can handle such a wide range of full functional ver-
ification properties of heaps automatically, given pre/post and loop
invariant annotations. We believe that this work paves the way for
deductive verification technology to be used by programmers who
do not (and need not) understand the internals of the underlying
logic solvers, significantly increasing their applicability in building
reliable systems.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams: Mechanical verification; D.2.4 [Software Engineering]:
Software/Program Verification: Assertion checkers

Keywords heap analysis; data structures; natural proofs; separa-
tion logic; SMT solvers

1. Introduction
In recent years, the automated deductive verification paradigm for
software verification that combines user written modular contracts
and loop invariants with automated theorem proving of the result-
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ing verification conditions has become very powerful. The latter
process is often executed by automated logical decision procedures
supported by SMT solvers, which have emerged as robust and pow-
erful engines to automatically find proofs. Several techniques and
tools have been developed [2, 16, 20] and there have been several
success stories of large software verification projects using this ap-
proach (the Verve OS project [42], the Microsoft hypervisor veri-
fication project using VCC [16], and a recent verified-for-security
OS+browser for mobile applications [29], to name a few).

Verification conditions do not, however, always fall into decid-
able theories. In particular, the verification of properties of the dy-
namically modified heap is a big challenge for logical methods. The
dynamically manipulated heap poses several challenges, as typical
correctness properties of heaps require complex combinations of
structure (e.g., p points to a tree structure, or to a doubly-linked
list, or to an almost balanced tree, with respect to certain pointer-
fields), data (the integers stored in data-fields of the tree respect the
binary search tree property, or the data stored in a tree is a max-
heap), and separation (the procedure modifies one list and not the
other and leaves the two lists disjoint at exit, etc.).

The fact that the dynamic heap contains an unbounded number
of locations means that expressing the above properties requires
quantification in some form, which immediately precludes the use
of most SMT decidable theories (there are only a few of them
known that can handle quantification; e.g., the array property frag-
ment [12] and the Strand logic [25, 26]). Consequently, express-
ing such properties naturally and succinctly in a logical formalism
has been challenging, and reasoning with them automatically even
more so.

For instance, in the Boogie line of tools (including VCC) of
writing specifications using first-order logic and employing SMT
solvers to validate verification conditions, the specification of in-
variants of even simple methods like singly-linked-list insert is te-
dious. In such code1, second-order properties (reachability, acyclic-
ity, separation, etc.) are smuggled in using carefully chosen ghost
variables; for example, acyclicity of a list is encoded by assign-
ing a ghost number (idx) to each node in the list, with the property
that the numbers associated with adjacent nodes strictly increase
going down the list. These ghost variables require careful manip-
ulation when the structures are updated; for example, inserting a
node may require updating the ghost numbers for other nodes in
the list, in order to maintain the acyclicity property. Once such a
ghost-encoding of the specification is formulated, the validation of
verification conditions, which typically have quantifiers, are dealt
with using sound heuristics (a wide variety of them including e-
matching, model-based quantifier instantiation, etc. are available),
but are still often not enough and have to be augmented by instan-
tiation triggers from the verification engineer to help the proof go
through.

1 http://vcc.codeplex.com/SourceControl/changeset/view/dcaa4d0ee8c2#vcc
/Docs/Tutorial/c/7.2.list.c
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In recent years, separation logic, especially in combination
with recursive definitions, has emerged as a much more succinct
and natural logic to express properties about structure and separa-
tion [32, 36]. However, the validation of verification conditions re-
sulting from separation logic invariants are also complex, and has
eluded automatic reasoning and exploitation of SMT solvers (even
more so than tools such as Boogie that use classical logic). Again,
help from the user in proving the verification conditions are cur-
rently necessary— the tools Verifast [20] and Bedrock [15], for
instance, admit separation logic specifications but require the user
to write low-level lemmas and proof tactics to guide the verifica-
tion. For example, in verifying an in-place reversal of a linked list2,
Bedrock would require several lemmas and a hint package be sup-
plied at the level of the code in order for the proof to go through.

The work in this paper is motivated by the opinion that en-
tirely decidable logics are too restrictive, in general, to support
the verification of complex specifications of functional correctness
for heap manipulating programs, and the other extreme of user-
supplied proof tactics and lemmas is too tedious, requiring of the
user too much knowledge of the underlying proof systems/decision
procedures. Our aim is to build completely automatic, sound, but
incomplete proof techniques that can solve a large class of proper-
ties involving complex data-structures.

The natural proof methodology:
Our proof methodology of natural proofs was first proposed in a pa-
per by Madhusudan et al on natural proofs for tree data-structures
last year at POPL [27]. Natural proofs exploit a fixed set of proof
tactics, keeping the expressiveness of powerful logics, retaining the
automated nature of proving validity, but giving up on complete-
ness (i.e., giving up decidability, retaining soundness). The idea of
natural proofs [27] is to identify a subclass of proofs N such that
(a) a large class of valid verification conditions of real-world pro-
grams have a proof in N , and (b) searching for a proof in N is
decidable. In fact, we would even like the search for a proof in N
to be efficiently decidable, possibly utilizing the automatic logic
solvers (SMT solvers) that exist today. Natural proofs are hence a
fixed set of proof tactics whose application is itself expressible in
a decidable logic. The natural proofs developed in [27] were too
restrictive, however, handling only single trees, with no scope for
handling multiple or more complex data-structures and their sepa-
ration (see section on Related Work for more details).

The aim of this paper is to provide natural proofs for general
properties of structure, data, and separation. Our contributions are:
(a) we propose Dryad, a dialect of separation logic for heaps, with
no explicit (classical) quantification but with recursive definitions,
to express second-order properties; (b) show that Dryad is both
powerful in terms of expressiveness, and that the strongest-post of
Dryad specifications with respect to bounded code segments can
be formulated in Dryad, (c) show how Dryad has been designed so
that it can be systematically converted to classical logic using the
theory of sets, allowing us to connect the more natural and succinct
specifications to more verbose but classical logic, and (d) develop
a natural proof mechanism for classical logics with recursion and
sets that implement sound but incomplete reductions to decidable
theories that can be handled by an SMT solver.

Dryad: A separation logic with determined heaplets
The primary design principle behind separation logic is the decision
to express strict specifications— logical formulas must naturally
refer to heaplets (subparts of the heap), and, by default, the smallest
heaplets over which the formula needs to refer to. This is in contrast
to classical logics (such as FOL) which implicitly refer to the entire
heap globally. Strict specifications permit elegant ways to capture

2 http://plv.csail.mit.edu/bedrock/Tutorial.html

how a particular sub-part of the heap changes due to a procedure,
implicitly leaving the rest of the heap and its properties unchanged
across a call to this procedure. Separation logic is a particular
framework for strict specifications, where formulas are implicitly
defined on strictly defined heaplets, and where heaplets can be
combined using a spatial conjunction operator denoted by ∗. The
frame rule in separation logic captures the main advantage of strict
specifications: if the Hoare-triple {P}C{Q} holds for some program
C, then {P ∗ R}C{Q ∗ R} also holds (with side-conditions that the
modified variables in C are disjoint from the free variables in R).

Consider, for example, expressing that the location x is the root
of a tree. This is a second-order property and formulations of it
in classical logic using set or path quantification are quite com-
plex and not easily amenable to automated verification. We prefer
inductive definitions of structural properties without any explicit
quantification. The separation logic syntax with recursive defini-
tions and heaplet semantics allows simple quantifier-free formulas
to express structural restrictions; for example. tree-ness can be ex-
pressed simply as:

tree(x) :: (x = nil ∧ emp) ∨ (x 7−→ (l, r) ∗ tree(l) ∗ tree(r))

We first define a new logic, Dryad, that permits no explicit
quantification, but permits powerful recursive definitions to define
integers, sets/multisets of integers, and sets of locations, using least
fixed-points. The logic Dryad furthermore has a heaplet semantics
and allows the spatial conjunction operator ∗. However, a key
design feature of Dryad is that the heaplet for recursive formulas is
essentially determined by the syntax as opposed to the semantics.
In classical separation logic, a formula of the form α ∗ β says that
the heaplet can be partitioned into any two disjoint heaplets, one
satisfying α and the other β. In Dryad, the heaplet for a (complex)
formula is determined and hence if there is a way to partition the
heaplet, there is precisely one way to do so. We have found that
most uses of separation logic to express properties can be written
quite succinctly and easily using Dryad (in fact, it is easier to
write such deterministic-heap specifications). The key advantage is
that this eliminates implicit existential quantification the separation
operator provides. In a verification condition that combines the pre-
condition in the negative and the post-condition in the positive,
the classical semantics for separation logic invariably introduces
universal quantification in the satisfiability query for the negation of
the verification condition, which in turn is extremely hard to handle.

In Dryad, the semantics of a recursive definition r(x) (such as
tree above), requires that the heaplet be determined and defined as
the set of all locations reachable from the node x through a set of
pointer-fields f1, . . . , fk without passing through a set of locations
(given by a set of location terms t1, . . . tn). While our logical mech-
anisms can be extended beyond this notion (in deterministic ways),
we have found that this captures most common properties required
in proving data-structure manipulating programs correct.

Translating Dryad to classical logic with recursion:
The second key step in our paradigm is a technique to bridge the
gap from separation logic to classical logic in order to utilize ef-
ficient decision procedures supported by SMT solvers. We show
that heaplet semantics and separation logic constructs of Dryad
can be effectively translated to classical logic where heaplets are
modeled as sets of locations. We show that Dryad formulas can be
translated into classical logic with free set variables that capture the
heaplets corresponding to the strict semantics. This translation does
not, of course, yield a decidable theory yet, as recursive definitions
are still present (the recursion-free formulas are in a decidable the-
ory). The carefully designed Dryad logic with determined heaplet
semantics ensures that there is no quantification in the resulting
formula in classical logic. The heaplets of recursively defined prop-

http://plv.csail.mit.edu/bedrock/Tutorial.html


erties, which are defined using the set of all reachable nodes, are
translated to recursively defined sets of locations.

Natural proofs for Dryad:
Finally, we develop a natural proof methodology for Dryad by
showing a natural proof mechanism for the equivalent formulas
in classical logic. The basic proof tactic that we follow is not just
dependent on the formula embodying the verification condition, but
also on the precise footprint touched by the program segment being
verified. We unfold recursive definitions precisely across footprints,
translating them to the frontier of the footprint, and then use a form
of formula abstraction that treats recursive formulas on frontier
nodes as uninterpreted functions. The resulting formula falls in a
logic over sets and integers, which is then decided using the theory
of uninterpreted functions and arrays using SMT solvers. The key
feature is that heaplets and separation logic constructs, which get
translated to recursively defined sets of locations, are unfolded
along with other user-defined recursive definitions and formula-
abstracted using this uniform natural proof strategy,

While our proof strategy is roughly as above, there are many
technical details that are complex. For example, the heaplets de-
fined by pre/post conditions intrinsically specify the modified lo-
cations of the heap, which have to be considered when processing
procedure calls in order to ensure which recursively defined metrics
on locations continue to hold after a procedure call. Also, the final
decidable theories that we compile our conditions down to does
require a bit of quantification, but it turns out to be in the array
property fragment which admits automatic decision procedures.

Implementation and Evaluation:
Our proof mechanisms are essentially a class of decidable proof
tactics that result in sound but incomplete validation procedures. To
show that this class of natural proofs is effective in practice, we pro-
vide a prototype implementation of our technique, which handles
a low-level programming language with pre-conditions and post-
conditions written in Dryad. We show, using a large class of correct
programs manipulating lists, trees, cyclic lists, and doubly linked
lists as well as multiple data-structures of these kinds, that the nat-
ural proof mechanism succeeds in proving the verifications con-
ditions automatically. These programs are drawn from a range of
sources, from textbook data-structure routines (binary search trees,
red-black trees, etc.) to routines from Glib low-level C-routines
used in GTK+/Gnome to implement file-systems, from the Schorr-
Waite garbage collection algorithm, to several programs from a re-
cent secure framework developed for mobile applications [29]. Our
work is by far the only one that we know of that can handle such a
large class of programs, completely automatically. Our experience
has been that the user-provided contracts and invariants are easily
expressible in Dryad, and the automatic natural proof mechanisms
work extremely fast. In fact, contrary to our own expectations, we
also found that the tool is useful in debugging: in several cases,
when the annotations supplied were incorrect, the model provided
by the SMT solver for the natural proof was useful in detecting
errors and correcting the invariants/program.

2. Related Work
The natural proof methodology was introduced in [27] (see also [39]),
but was exclusively built for tree data-structures. In particular, this
work could only handle recursive programs, i.e., no while-loops,
and even for tree data-structures, imposed a large number of restric-
tions on pre/post conditions for methods— the input to a procedure
had to be only a single tree, the method can only return a sin-
gle tree, and even then must havoc the input tree given to it. The
lack of handling of multiple structures means that even simple pro-
grams like mergesort (that merges two lists), cannot be handled,

and simple programs that manipulate two lists or two trees cannot
be reasoned with. Also, structures such as doubly-linked lists, trees
with parent pointers, etc. are out of scope of this work. Technically,
in our present work, we can handle user-defined structures express-
ible in separation logic, multiple structures and their separation,
programs with while-loops, etc., because of our logical treatment
of separation logic using classical logic.

There is a rich literature on analysis of heaps in software. We
omit discussing literature on general interactive theorem provers
(like Isabelle [31]) that require considerable manual guidance.
We also omit a lot of work on analyzing shape properties of the
heap [6, 13, 18, 28, 41], as they do not handle complex functional
properties.

There are several proof systems and assistants for separation
logic [32, 36] that incorporate proof heuristics and are incom-
plete. However, [3] gives a small decidable fragment of separation
logic on lists which has been further extended in [11] to include
a restricted form of arithmetic. Symbolic execution with separa-
tion logic has been used in [4, 5, 8] to prove structural specifica-
tions for various list and tree programs. These tools come hard-
wired with a collection of axioms and their symbolic execution en-
gines check the entailment between two formulas modulo these ax-
ioms. Verifast [20], on the other hand, chooses flexibility of writ-
ing richer specifications over complete automation, but requires the
user to provide inductive lemmas and proof tactics to aid verifica-
tion. Similarly, Bedrock [15] is a Coq library that aims at mostly
automated (but not completely automated) procedures that requires
some proof tactics to be given by the user to prove verification
conditions. The idea of using regions (sets of locations) for de-
scribing heaps in our work also extends to describing frames for
function calls, and the use for the latter is similar to implicit dy-
namic frames [38] in the literature. The crucial difference in our
framework is that the implicit dynamic frames are syntactically de-
termined, and amenable to quantifier-free reasoning. A work that
comes very close to ours is a paper by Chin et al. [14], where the au-
thors allow user-defined recursive predicates (similar to ours) and
build a terminating procedure that reduces the verification condi-
tion to standard logical theories. However, their procedure does not
search for a proof in a well-defined simple and decidable class, un-
like our natural proof mechanism; in fact, the resulting formulas are
quantified and incompatible with decidable logics handled by SMT
solvers.

In all of the above cited work and other manual and semi-
automatic approaches to verification of heap-manipulating pro-
grams like [37], inductive definitions of algebraic data-types is ex-
tremely common for capturing second-order data-structure proper-
ties. Most of these approaches use proof tactics which unroll induc-
tive definitions and do extensive unification to try to match terms
to find simple proofs. Our notion of natural proofs is very much in-
spired by such kinds of semi-automatic and manual heap reasoning
that we have seen in the literature.

There is also a variety of verification tools based on classi-
cal logics and SMT solvers. Dafny [23] and VCC [16] compile
to Boogie [2] and generate VCs that are passed to SMT solvers.
This approach requires significant ghost annotations, and annota-
tions that explicitly express and manipulate frames. The Jahob sys-
tem [43, 44] is one of the first attempts at full functional verifica-
tion of linked data structures, which integrates a variety of theo-
rem provers, including SMT solvers, and makes the process mostly
automated. However, complex specifications combining structure,
data and separation usually require more complex provers such
as Mona [21], or even interactive theorem provers such as Is-
abelle [31] in the worst case. The success of the proof search also
relies on users’ manual guidance.



void heapify(loc x) {
if (x.left = nil)
s := x.right;
else if (x.right = nil)
s := x.left;
else {
lx := x.left
rx := x.right;
if (lx.key < rx.key)
s := x.right;
else
s := x.left;

}
if (s =/= nil)
if (s.key > x.key) {
t := s.key;
s.key := x.key;
x.key := t;
heapify(s);
}

}

ϕpre ≡
(
x

key,left,right
7−→ (k, l, r)

∗ mheap∆
−→
pf

(l) ∗ mheap∆
−→
pf

(r)
)

∧ keys∆
−→
pf

(x) = K

ϕpost ≡ mheap∆
−→
pf

(x) ∧ keys∆
−→
pf

(x) = K

assume x.left0 , nil
assume x.right0 , nil
lx := x.left0
rx := x.right0
assume lx.key0 < rx.key0
s := x.right0
assume s , nil
assume s.key0 > x.key0
t := s.key0
s.key1 := x.key0
x.key2 := t
heapify(s)

mheap∆
−→
pf

(x)
def
=

(
x = nil ∧ emp

∨
(
x

key,left,right
7−→ (k, l, r)

∗ (mheap∆
−→
pf

(l) ∧ {k} ≥ keys∆
−→
pf

(l))

∗ (mheap∆
−→
pf

(r) ∧ {k} ≥ keys∆
−→
pf

(r))
))

keys∆
−→
pf

(x)
def
=

(
x = nil ∧ emp : ∅ ;

x
key,left,right
7−→ (k, l, r) ∗ true :

keys∆
−→
pf

(l) ∪ {k} ∪ keys∆
−→
pf

(r) ;

default : ∅
)

Figure 1. Motivating example: Heapify

The idea of unfolding recursive definitions and formula abstrac-
tion also features in the work by Suter et al. [39, 40], where a pro-
cedure for algebraic data-types is presented. However, this work
focuses on soundness and completeness, and is not terminating for
several complex data structures like red-black trees. Moreover, the
work limits itself to functional program correctness; in our opinion,
functional programs are very similar to algebraic inductive specifi-
cations, leading to much simpler proof procedures.

There is also a rich literature on completely automatic deci-
sion procedures for restricted heap logics, some of which com-
bine structure-logic and arbitrary data-logic. These logics are usu-
ally FOLs with restricted quantifiers, and usually are decided us-
ing SMT solvers. The logics Lisbq [22] and CSL [9, 10] offer such
reasoning with restricted reachability predicates and quantification;
see also the logics in [1, 7, 30, 33–35]. Strand is a relatively ex-
pressive logic that can handle some data-structure properties (like
BSTs) and admits decidable fragments [25, 26], but is again not
expressive enough for more complex properties of inductive data-
structures. None of these logics can express the class of VCs for
full functional verification explored in this paper.

3. Motivating Example
In this section we give intuition into our verification approach
through a motivating example. Recall that a max-heap is a binary
tree such that for each node n the key stored at n is greater than
or equal to the keys stored at each of its children. Heaps are often
used to implement priority queues. In Figure 1, in the lower right
corner, we express the property that a location x points to a max-
heap using recursive definitions keys∆

−→
pf

(x) and mheap∆
−→
pf

(x), with
−→
pf ≡ {left, right}. These recursive definitions are written in Dryad,
which is formally introduced in Section 4. Intuitively, Dryad ex-
tends quantifier free separation logic [32, 36] with recursive predi-
cates and functions. These recursive definitions allow us to express
structural and data properties on the heap, like those of max-heap,
without explicit quantification.

For a location x, the recursive definition keys∆
−→
pf

(x) returns the
set of keys at the nodes of the tree rooted at x: if x is nil and the
heaplet is empty, then the empty-set; otherwise, the union of the
key stored at x and the keys stored in the left and right subtrees of
x. Similarly, the recursive definition mheap∆

−→
pf

(x) states that x points
to a max-heap if: x is nil and the heaplet is empty; or x and the
heaplets of the left and right subtrees of x are mutually disjoint (x
points to a tree) and the key at x is greater than or equal to the keys
of the left and right subtrees of x.

The method heapify in Figure 1 is at the heart of the procedure
for deleting the root from a max-heap (removing the node with the
maximum priority). If the max-heap property is violated at a node x
while satisfied by its descendants, then heapify restores the max-
heap property at x. It does so by recursively descending into the
tree, swapping the key of the root with the key at its left or right
child, whichever is greater. The precondition ϕpre binds the free
variable K to the set of keys of x. The postcondition states that
after the procedure call, x satisfies the max-heap property and the
set of keys of x is unchanged (same as K).

One of the main aspects of our approach is to reduce reasoning
about heaplet semantics and separation logic constructs to reason-
ing about sets of locations. We use set operations like union, in-
tersection and membership to describe separation constraints on a
heaplet satisfying a formula. This translation from Dryad formu-
las, like those in Figure 1, to formulas in classical logic with re-
cursive predicates and functions is formally presented in Section 5.
Intuitively, we associate a set of locations to each (spatial) atomic
formula, which is the domain of the heaplet satisfying that formula.
Dryad requires that this heaplet is syntactically determined for each
formula. For example, the heaplet associated to the formula x 7→ . . .
is the singleton {x}; for recursive definitions like mheap∆

−→
pf

(x) and

keys∆
−→
pf

(x), the domain of the heaplet is reach{left,right}(x), which in-
tuitively is the set of locations reachable from x using the pointer
fields left and right, and can be defined recursively.

As shown in Figure 1, ϕpre is a conjunction of two formulas.
If Gpre is the domain of the heaplet associated to ϕpre, then the
first conjunct requires Gpre to be the disjoint union of the sets {x},
reach{left,right}(left(x)) and reach{left,right}(right(x)). The second con-
junct requires Gpre = reach{left,right}(x). From these heaplet con-
straints, we can translate ϕpre to the following formula in classical
logic over the global heap:

Gpre = {x} ∪ reach{left,right}(left(x)) ∪ reach{left,right}(right(x))
∧ x < reach{left,right}(left(x)) ∧ x < reach{left,right}(right(x))
∧ reach{left,right}(left(x)) ∩ reach{left,right}(right(x)) = ∅ ∧ x , nil
∧ mheap(left(x)) ∧ mheap(right(x))
∧ Gpre = reach{left,right}(x) ∧ keys(x) = K

Similarly, we translate ϕpost to

Gpost = reach{left,right}(x) ∧ mheap(x) ∧ keys(x) = K

Note that the recursive definitions mheap and keys without the
“∆” superscript are in the classical logic (without the heaplet con-
straint). Hence the recursive predicate mheap satisfies

mheap(x)↔ x=nil∧reach{left,right}(x) = ∅
)

∨
(
x,nil∧x<reach{left,right}(left(x))∧x<reach{left,right}(right(x))
∧ reach{left,right}(left(x)) ∩ reach{left,right}(right(x)) = ∅
∧

(
reach{left,right}(x) = {x} ∪ reach{left,right}(left(x))
∪reach{left,right}(right(x))

)
∧ mheap(left(x)) ∧ {key(x)} ≥ keys(left(x))
∧ mheap(right(x)) ∧ {key(x)} ≥ keys(right(x))

)
The right side of Figure 1 presents a basic path from method

heapify, corresponding to the case when both children of x are
not nil and the key of the right child is greater than the keys of the



left child and the root. The subscript of a pointer/data field denotes
the timestamp. A key insight is that any basic path touches a finite
number of locations and may call some recursive procedures. We
refer to the touched locations as the footprint, and to the adjacent
locations which are not part of the footprint as the frontier. For this
example, the footprint is { x, lx, rx } (s is known to be equal with
rx) and the frontier is { left0(lx), right0(lx), left0(rx), right0(rx) }.
We capture the effect of the path until the call to heapify by

left0(x) , nil ∧ right0(x) , nil ∧ lx = left0(x) ∧ rx = right0(x)
∧ key0(lx) < key0(rx) ∧ s = right0(x) ∧ s , nil
∧ key0(s) > key0(x) ∧ t = key0(s)
∧ key1 = key0{s← key0(x)} ∧ key2 = key1{x← t}

Once we have expressed the verification condition in classical
logic with recursive definitions over the global heap, we prove
it using the natural proof methodology. We unfold the recursive
definitions mheap(x), keys(x) and reach{left,right}(x) for x, lx and rx
(the footprint), thus evaluating them in terms of their values on the
frontier. The call to heapify preserves the recursive definitions on
locations reachable from lx, and modifies those on rx according to
the pre/post condition. Finally, we abstract the recursive definitions
on the frontier with uninterpreted functions. We decide the resulted
formula (which is in a decidable logic) using an SMT solver.
Section 6 describes this process in detail.

4. The Logic Dryad
In this section we present our logic Dryadsep; this redefines the
logic Dryad [27] on arbitrary data-structures (not just trees), using
heaplet semantics and separation logic primitives; the logic hence is
a quantifier-free heaplet logic augmented with recursively defined
predicates/functions. However, for brevity, we will refer to the
new logic we propose as Dryad, and refer to the logic in [27] as
Dryadtree.

4.1 Syntax
Let us fix a finite set of pointer-fields PF and a finite set of data-
fields DF. A record consists of a set of pointer-fields from PF and
a set of data-fields from DF. Our logic also presumes that locations
refer to entire records rather than particular fields, and that address
arithmetic is precluded. We will use the term locations hence to
refer to these records. We assume that every field is defined at
every location, i.e., all memory records have the same layout (to
simplify the presentation); our logic can easily be extended with
record types.

Let Bool = {true, false} stand for the set of Boolean values,
Int stand for the set of integers and Loc stand for the universe of
locations. For any set A, let S(A) denote the set of all finite subsets
of A, and let MS(A) denote the set of all finite multisets with
elements in A.

The Dryad logic allows expressing quantifier-free first-order
properties over heaps/heaplets augmented with recursively defined
notions for a location to express second-order properties, denoted
as a function r : Loc → D. The codomain D can be IntL, S(Loc),
S(Int), MS(Int)L or Bool, where IntL and MS(Int)L extend Int
andMS(Int) to lattice domains, respectively, in order to give least
fixed-point semantics (explained later in this section). Typical ex-
amples of these recursive definitions include the definitions of the
height of a tree or the height of black-nodes in the tree rooted at a
node (recursively defined integers), the set of nodes reachable from
a location following certain pointer fields (recursively defined sets
of locations), the set/multiset of keys stored at a particular data-field
under nodes reachable from a location (recursively defined set/mul-
tiset of integers), and the property that the tree rooted at a node is
a binary search tree or a balanced tree or just a tree (recursively
defined predicates).

A Dryad formula ϕ is quantifier-free, but parameterized by a set
of recursive definitions Def ∆. The syntax of Dryad logic is given
in Figure 2, where the syntax of formulas is followed by the syntax
for recursive definitions. Most symbols in Dryad are common and
self-explanatory. Note that the inequality (< or ≤) between integer
sets/multisets indicates that any integer in the left-hand side is
less-than/not-greater-than any integer in the right-hand side. It is
also noteworthy that the separating conjunction (∗) from separation
logic is also allowed, but only if it is not above any negation
(¬). We require that every recursive function/predicate used in the
formula ϕ has a unique definition in Def ∆. Each recursive function
is parameterized by a set of pointer fields

−→
pf and a set of program

variables ~v, denoted as f ∆
−→
pf ,~v

. The subscripts are used in defining the
semantics of recursive functions in Section 4.2. We usually simply
use f ∆ when the subscripts are not relevant in the context. Similarly,
recursive predicates are denoted as p∆

−→
pf ,~v

or simply p∆. The recursive
functions are defined using the syntax:(
ϕ

f
1 (x,~v, ~s) : t f

1 (x, ~s) ; . . . ; ϕ f
k (x,~v, ~s) : t f

k (x, ~s) ; default : t f
k+1(x, ~s)

)
where ϕ f

u (x,~v, ~s)/t f
u (x, ~s) is a formula/term in our logic with ~s im-

plicitly existentially quantified. The recursively defined predicates
are defined using the syntax: ϕp(x,~v, ~s), which is a formula in our
logic with ~s implicitly existentially quantified. The recursive func-
tion syntax above expresses a case-split, with the function evaluat-
ing to the first term whose guard evaluates to true. The restrictions
on the recursive definitions are:

• Subtraction, set-difference, and negation are disallowed;
• Every variable in ~s should appear in the right hand side of a

points-to relation binding it to x exactly once.

For examples of recursive functions and predicates, see the defini-
tions keys∆

−→
pf

(x) and mheap∆
−→
pf

(x) in Figure 1, respectively. The set of
program variables ~v parameterizing the definitions is empty in both
these definitions and the set of implicitly existentially-quantified
variables ~s is {k, l, r}.

4.2 Semantics
Our logic is interpreted on models that are program states:

Definition 4.1. A program state is a tuple C = (R, s, h) where

• R ⊆ Loc \ {nil} is a finite set of locations;
• s : Vars → Int ∪ Loc is a store mapping program variables to

locations or integers (of appropriate type);
• h : R × (PF ∪ DF) → Int ∪ Loc is a heaplet mapping non-

nil locations and each pointer-field/data-field to values of the
appropriate type. �

Note that the set of locations is, in general, larger than the state
R and hence R defines a subset of heap locations. The store maps
variables to locations (not necessarily in R), but the heaplet h gives
interpretations for pointer and data-fields only for elements in R.

Given a heaplet h, for every pointer field pf, we denote the
projection of h on R× (PF \ {pf}∪DF) as h - pf; similarly, for every
data-field df, we denote the projection of h on R × (PF ∪DF \ {df})
as h - df. Also, for every subset S ⊆ R, we denote the projection of
h on S × (PF ∪ DF) as h | S .

A term/formula with free variables F is interpreted by interpret-
ing the free variables in F using the map s from variables to values.
The semantics of Dryad is similar to that of classical Separation
Logic (SL). In particular, a term/formula without recursive defini-
tions is interpreted exactly in the same way in Dryad and SL. Hence
we first give the semantics of the non-recursive part, followed by
the semantics of recursive definitions.



i∆ : Loc→ IntL sl∆ : Loc→ S(Loc) si∆ : Loc→ S(Int) msi∆ : Loc→MS(Int)L p∆ : Loc→ Bool
j ∈ IntL Variables L ∈ S(Loc) Variables S ∈ S(Int) Variables MS ∈ MS(Int)L Variables q ∈ Bool Variables
x ∈ Loc Variables c : IntL Constant pf ∈ PF df ∈ DF

Loc Term: lt ::= x | nil
IntL Term: it ::= c | j | i∆−→

pf ,~v
(lt) | it + it | it − it

S(Loc) Term: slt ::= ∅l | L | {lt} | sl∆−→
pf ,~v

(lt) | slt ∪ slt | slt ∩ slt | slt \ slt

S(Int) Term: sit ::= ∅s | S | {it} | si∆
~pf,~v

(lt) | sit ∪ sit | sit ∩ sit | sit \ sit

MS(Int)L Term: msit ::= ∅m | MS | {it}m | msi∆
~pf,~v

(lt) | msit ∪ msit | msit ∩ msit | msit\msit

Positive Formula: ϕ ::= true | false | q | p∆
−→
pf ,~v

(lt) | emp | lt
−→
pf ,
−→
df
7−→ (~lt, ~it) | lt = lt | lt , lt | it ≤ it | it < it | sit ≤ sit | sit < sit | msit ≤ msit | msit < msit

| slt ⊆ slt | slt * slt | sit ⊆ sit | sit * sit | msit v msit | msit @ msit | lt ∈ slt | lt < slt | it ∈ sit | it < sit | it ∈ msit | it < msit
| ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ∗ ϕ

Formula: ψ ::= ϕ | ψ ∧ ψ | ψ ∨ ψ | ¬ψ

Recursive function : f ∆
−→
pf ,~v

(x)
def
=

(
ϕ

f
1 (x,~v, ~s) : t f

1 (x, ~s) ; . . . ; ϕ f
k (x,~v, ~s) : t f

k (x, ~s) ; default : t f
k+1(x, ~s)

)
Recursive predicate : p∆

−→
pf ,~v

(x)
def
= ϕp(x,~v, ~s)

Figure 2. Syntax of Dryad

Before defining the semantics of formulas, we define the pure
property for terms/formulas. Intuitively, a term/formula is pure if it
is independent of the heap. Syntactically, a term/formula is pure if
it does not contain emp, 7−→ or any recursive definition. Note that
in SL all terms are pure, but in Dryad, a term can be impure if it
contains a recursive function f ∆.

Semantics of terms
Each T -term evaluates to either a normal value of type T , or to
undef, which is only used in interpreting recursive functions (will
be explained later). As a special value, undef will be propagated
throughout the formula: if a formula ϕ contains a sub-term that
evaluates to undef, then ϕ will evaluate to false if it appears
positively, and will evaluate to true otherwise. Intuitively, undef
cannot help in making the formula true over a model.

The Loc terms are evaluated as follows:
~x�C = s(x)

~nil�C = nil

For any binary operator op, t op t′ is evaluated as follows:

~t op t′�C =


~t�C op ~t′�C if t or t′ is pure
~t�C|R1 op ~t′�C|R2 else if there exist R1,R2 such that

R = R1 ∪ R2, ~t�C|R1 , undef
and ~t′�C|R2 , undef

undef otherwise

where op is interpreted in the natural way.
For singletons, {it} will evaluate to ∅ if it evaluates to −∞ or∞:

~{it}�C =


undef if ~it�C = undef
∅ if ~it�C = −∞ or ∞
{~it�C} otherwise

{it}m and {lt} evaluate similarly.

Semantics of formulas
The formula true is always interpreted to be true:

(R, s, h) |= true

The formula emp asserts that the heap is empty:
(R, s, h) |= emp iff R = ∅

The formula lt
−→
pf ,
−→
df
7−→ (~lt, ~it) asserts that the heap contains exactly

one record consisting of fields
−→
pf and

−→
df , at address lt, with values

~lt and ~it, respectively. Formally, the semantics of this formula is
given as:

(R, s, h) |= lt
−→
pf ,
−→
df
7−→ (~lt, ~it) iff R = {~lt�R,s,h} and

h(~lt�R,s,h, pfi) = ~lti�R,s,h for corresponding pfi and lti,

h(~lt�R,s,h, dfi) = ~iti�R,s,h for corresponding dfi and iti.

Note that, as in separation logic, the above has a strict semantics—
the heaplet must be a singleton set and cannot be a larger set.

For binary relations t ∼ t′ between integers, sets, and multisets,
including equality, the pure property plays an important role. Re-
member that in SL all terms are pure. To be consistent with SL, if
both t and t′ are pure, it is interpreted in the normal way. Otherwise,
t ∼ t′ is only defined on the minimum heaplet required by t and t′,
more concretely the union of the heaplet associated with t and t′.

(R, s, h) |= t ∼ t′ iff t or t′ is pure and ~t�C ∼ ~t′�C
or t and t′ are impure and there exist R1,R2 s.t. R = R1 ∪ R2

and ~t�C|R1 , undef, ~t
′�C|R2 , undef and ~t�C|R1 ∼ ~t

′�C|R2

where ∼ is interpreted in the natural way.
The semantics of the disjoint conjunction operator ∗ is defined

as follows. The formula ϕ0 ∗ ϕ1 asserts that the heap can be split
into two disjoint parts in which ϕ0 and ϕ1 hold respectively:

(R, s, h) |= ϕ0 ∗ ϕ1 iff there exist R0,R1 s.t. R0 ∩ R1 = ∅ and

R0 ∪ R1 = R and (R0, s, h | R0) |= ϕ0 and (R1, s, h | R1) |= ϕ1

Boolean combinations are defined in the standard way:
(R, s, h) |= ϕ0 ∧ ϕ1 iff (R, s, h) |= ϕ0 and (R, s, h) |= ϕ1
(R, s, h) |= ϕ0 ∨ ϕ1 iff (R, s, h) |= ϕ0 or (R, s, h) |= ϕ1

(R, s, h) |= ¬ϕ iff (R, s, h) 6|= ϕ

Semantics of recursive definitions
The main semantical difference between Dryad and SL is on recur-
sive definitions. We would like to deterministically delineate the
heap domain for any recursive definition, so that the heap domain
required by any Dryad formula can be syntactically determined.
Given a recursive definition rec∆

−→
pf ,~v

, the subscripts
−→
pf and ~v play a

role in delineating the heap domain. Intuitively, the heap domain for
rec∆

−→
pf ,~v

(l) is the set of locations reachable from l using pointer-fields

in
−→
pf , but without going through the locations~v. In other words, we

want to take the set of locations that lie in between l and~v. Precisely,
this set is determined by a location l and a program state (R, s, h).



We denote it as reachset−→
pf ,~v

(l, (R, s, h)). Formally it is the smallest
set of locations L satisfying the following two conditions:

1. l is in the set L if l is not in ~v and l , nil;

2. for each c in L, with c ∈ R, and for each pointer pf, if h(c, pf) is
not in ~v and is not nil, then h(c, pf) is also in L.

Note that even though the reach set is defined with respect to
the edges in the heaplet, we can determine whether R includes all
nodes reachable from l without going through ~v in the global heap
by checking whether R = reachset−→

pf ,~v
(l, (R, s, h)).

For each recursive definition rec∆
−→
pf ,~v

, we usually simply denote

reachset−→
pf ,~v

as reachsetrec, as the subscripts are implicitly known.
Now, given a program state C = (R, s, h) and a recursive

function/predicate rec∆, the semantics on a location l depends
on whether the heap domain R is exactly the required reach set
reachsetrec(l, (R, s, h)). If this is not true, we simply interpret it as
undef or false.

If the heap domain matches the reach set (i.e., R = reachset−→
pf ,~v

(l,
(R, s, h))), the semantics is defined in the natural way (using least
fixed-points). The colon operator in the syntax of recursive function
f ∆
−→
pf ,~v

translates into a nested if-then-else (ITE) operator. Formally,

~ f ∆
−→
pf ,~v

(l)�C = ITE
(
ϕ

f
1 , ~t

f
1�C|R1 , ITE(ϕ f

2 , ~t
f
2�C|R2 , . . . ~t

f
k+1�C|Rk+1 . . . )

)
where R1 . . .Rk+1 ⊆ R such that ~t f

i �C|Ri , undef. In order to give
least fixed-point semantics for recursive definitions in the logic, we
extend the primitive data-types to lattice domains. Bool with the
order false v true forms a complete lattice, and S(Loc) and
S(Int) ordered by inclusion, with join as union and meet as in-
tersection, form complete lattices. Integers and multisets are ex-
tended to lattices. Let (IntL,≤) denote the complete lattice, where
IntL = Int∪{−∞,∞}, and where the ordering is ≤, join is max, meet
is min. Also, MS(Int)L,v denote the complete lattice constructed
fromMS(Int), whereMS(Int)L = MS(Int) ∪ {>}, and v extends
the inclusion relation with S v > for any M ∈ MS(Int). It is easy
to see that (IntL,v) and (MS(Int)L,v) are complete lattices.

Formally, let Def consists of definitions of integer functions I,
set-of-locations functions SL, set-of-integers functions SI, multiset-
of-integers functions MSI and predicates P. Since these definitions
could rely on each other, we evaluate them altogether as a function
vector

r∆ = (
−→
i∆ ,
−→

sl∆,
−→

si∆,
−−−→

msi∆,
−→
p∆)

We take the cartesian product lattice of the individual lattices and
take the least fixed-point of r∆ to obtain the semantics for each
definition. Let selectrec(lfp(r∆)), for each recursive definition rec∆,
denote the selection of the coordinate for rec∆ in lfp(r∆).

Now we can formally define the semantics of recursive defini-
tions. For any configuration C, the semantics of a recursive function
f ∆ is defined as:

~ f ∆(lt)�C =

{
select f

(
lfp(r∆)

)
(~lt�C) if R = reachset f (~lt�C ,C)

undef otherwise

and the semantics of a recursive predicate p∆ is defined as

~p∆(lt)�C =

{
selectp

(
lfp(r∆)

)
(~lt�C) if R = reachsetp(~lt�C ,C)

false otherwise

Remark: Note that we disallow negative operations (subtraction,
set-difference and negation) in defining recursive definitions. This
syntactical restriction guarantees that each iteration of r∆ is mono-
tonic. By Knaster-Tarski theorem, r∆ admits a least fixed-point.

Examples
The Dryad logic was already used in Section 3 to define max-
heaps. Note that the definition of a max-heap is precisely defined

on the heaplet that includes the underlying tree nodes of the max-
heap only, as the heaplet for a recursive definition is the set of all
reachable nodes according to the two pointers.

To clarify the difference between Dryad and SL, consider now
this recursive definition:

p∆
{l,r}(x)

def
= (x = nil ∧ emp) ∨

[
(x

l,r
7−→ y, z) ∗

(
p∆
{l,r}(y) ∨ p∆

{l,r}(z)
)]

Now consider a global heap that has a tree rooted at x with pointer
fields l and r. The above recursive formula, in separation logic, will
be true on any heaplet that contains the nodes of a path in this tree
from x to nil. However, in Dryad, we require that the heaplet must
satisfy the heap constraints of the formula and also be the precise
set of locations reachable from x using the pointer fields l and r.
Consequently, if the tree pointed to by x has more than one path,
the Dryad formula will be false for any heaplet.

The above example shows the advantage of Dryad; when
heaplets are determined, we can avoid quantification. We have not
found natural examples where an undetermined heaplet semantics
helps in specifying properties of heaps.

Dryad can express structures beyond trees. The main restriction
we do impose is that we allow only unary recursive definitions, as
this allows us to find simpler natural proofs since there is only one
way to unfold the definition across a footprint. However, Dryad can
express structures like cyclic lists and doubly-linked lists.

A cyclic-list is captured as (v 7→ y) ∗ lseg∆
next,v(y). Here, v is

a program variable which denotes the head of the cyclic-list and
lseg∆

next,v(y) captures the list segment from y back to the head v,
where the subscripts next and v indicate that the heaplet of the list
segment is the locations that can be reached using the field next, but
without going through v:

lseg∆
next,v(y)

def
= (y = v ∧ emp) ∨

(
(y

next
7→ z) ∗ lseg∆

next,v(z)
)

Another interesting example is a doubly-linked list. We define a
doubly-linked list as the following unary predicate:

dll∆next(x) = (x = nil ∧ emp) ∨ (x
next
7→ nil) ∨(

x
next
7→ y ∗

(
(y

prev
7→ x ∗ true) ∧ dll∆next(y)

) )
The first two disjuncts in the definition cover the base case when

x is nil or the location next to x is nil; otherwise, let y be the location
next to x, then the prev pointer at y points to x and location y is
recursively defined as a doubly-linked list.

5. Translation to a Logic over the Global Heap
We now show one of the main contributions of this paper— a trans-
lation from Dryad logic to classical logic with recursive predicates
and functions, but over the global heap. The formulation of separa-
tion logic primitives in the global heap allows us to express com-
plex structural properties, like disjointness of heaplets and tree-
ness, using recursive definitions over sets of locations, which are
defined locally, and are amenable to unfolding across the footprint
and hence amenable to natural proofs.

For example, consider the formula mheap∆(x) ∗ mheap∆(y),
where mheap∆ is defined in Section 3. Since the heaplets for
mheap∆(x) and mheap∆(y) are precise, it can get translated to an
equivalent formula with a free set variable G that denotes the global
heap over which the formula is evaluated:

mheap(x) ∧ mheap(y) ∧ (reachmheap(x) ∩ reachmheap(y) = ∅)

∧ (reachmheap(x) ∪ reachmheap(y) = G)

where mheap and reachmheap are corresponding recursive defini-
tions in classical logic, which will be defined later in this section.
Note that we use italics and remove the ∆ superscript to show the
difference from their counterpart in Dryad.

We assume the Dryad formula to be translated is in disjunctive
normal form, i.e.,∨ operators should be above all ∗ and∧ operators.



Construct Domain-exact Scope
var/const false ∅

{t}/{t}m dom-ext(t) scope(t)
t op t′ dom-ext(t) ∨ dom-ext(t′) scope(t) ∪ scope(t′)
f ∆(lt) true reachset f (lt)

true/false false ∅

emp true ∅

lt
~pf,~df
7−→ (~lt, ~it) true {lt}
p∆(lt) true reachsetp(lt)
t ∼ t′ dom-ext(t) ∨ dom-ext(t′) scope(t) ∪ scope(t′)
ϕ ∧ ϕ′ dom-ext(ϕ) ∨ dom-ext(ϕ′) scope(ϕ) ∪ scope(ϕ′)
ϕ ∗ ϕ′ dom-ext(ϕ) ∧ dom-ext(ϕ′) scope(ϕ) ∪ scope(ϕ′)

Figure 3. Domain-exact property and Scope function. Both are de-
fined only for terms and formulas without disjunction and negation.
A formula is assumed in its disjunctive normal form.

This is not a real restriction as one can always push the disjunction
out. This normal form ensures that for all occurrences of the separa-
tion operator in a formula, there exists a unique way of splitting the
heap so as to satisfy the ∗ separated sub-formulas. Also, it ensures
that this unique heap-split can be determined syntactically from the
structure of those sub-formulas.

In our translation, we model the heaplets associated with a for-
mula or a term as a set of locations and all operations on these
heaplets are modeled as set operations like set union, set intersec-
tions, etc. over set-of-location variables. For example the separating
conjunction P∗Q is translated to the following set constraint: the in-
tersection of the sets associated with the heaplets in the formulas P
and Q is empty. Given a formula ϕ in Dryad and its associated heap
domain modeled by a set variable G, we define an inductive trans-
lation T into a classical logic formula T (ϕ, G) in the quantifier-
free theory of finite sets, integers and uninterpreted functions. The
translated formula is not interpreted on a heaplet, but interpreted on
a global heap (i.e., with the heap domain Loc).

The translation uses an auxiliary domain-exact property and
an auxiliary scope function. The domain-exact property indicates
whether a term evaluates to a well-defined value or a positive
formula evaluates to true on a fixed heap domain or not. This is
different from the property pure; a pure formula or term is not
domain-exact but the reverse implication is not true, in general. For
example, the formula (lt 7−→ it) ∗ true is not domain-exact but is
also not pure. The scope function maps a term to the minimum
heap domain required to evaluate it to a normal value, and maps a
positive formula to the minimum heap domain required to evaluate
it to true. The domain-exact property and the scope function are
defined inductively in Figure 3.

We describe the logic translation in detail in Figure 4. The ITE
expression used in the translation is short for ”if-then-else”. It is just
a conditional expression defined as follows: ITE(φ, t1, t2) evaluates
to t1 if φ is true, otherwise evaluates to t2.

In general, our translation restricts an impure term/formula to
be evaluated only on the syntactically determined heap domain
according to the semantics of Dryad. In particular, when evaluating
a recursive formula or predicate p∆, we ensure that the heaplet is
precisely the reach set reachp(lt). For a formula ϕ ∗ ϕ′, translation
to classical logic depends on whether the sub-formulas ϕ and ϕ′

are domain-exact or not. If a sub-formula is domain-exact then it is
evaluated on its scope. If it is not domain-exact, then it is evaluated
on the rest of the heaplet.

Recursive definitions in Dryad are also translated to recursive
definitions in classical logic. Translating a recursive definition rec∆

uses the corresponding definitions rec and reachrec, both of which
are defined recursively in classical logic. The set reachrec repre-
sents the domain of the required heaplet for evaluating rec∆, and
the ∆-eliminated definition rec captures the value of rec∆ when the

T (var / const, G) ≡ var / const
T ({t} / {t}m, G) ≡ {t} / {t}m

T (t op t′, G) ≡ T (t,G) op T (t′,G)
T ( f ∆(lt), G) ≡ ITE

(
reach f (lt) = G, f (lt), undef

)
T (true / false, G) ≡ true / false

T (emp, G) ≡ G = ∅

T (lt
~pf,~df
7−→ (~lt, ~it), G) ≡ G = {lt} ∧

∧
pfi pfi

(
T (lt,G)

)
= T (lti,G)

∧
∧

dfi dfi
(
T (lt,G)

)
= T (iti,G)

T (p∆(lt), G) ≡ p(lt) ∧G = reachp(lt)

T (t ∼ t′, G) ≡

 t ∼ t′ if t ∼ t′ is not domain-exact

t ∼ t′ ∧G = scope(t ∼ t′) otherwise
T (ϕ ∧ ϕ′, G) ≡ T (ϕ,G) ∧ T (ϕ′,G)
T (ϕ ∨ ϕ′, G) ≡ T (ϕ,G) ∨ T (ϕ′,G)

T (¬ϕ, G) ≡ ¬T (ϕ,G)

T (ϕ ∗ ϕ′, G) ≡



T
(
ϕ, scope(ϕ)

)
∧ T

(
ϕ′, scope(ϕ′)

)
∧ scope(ϕ) ∪ scope(ϕ′) = G
∧ scope(ϕ) ∩ scope(ϕ′) = ∅

if both ϕ and ϕ′ are domain-exact

T
(
ϕ, scope(ϕ)

)
∧ T

(
ϕ′, G \ scope(ϕ)

)
∧ scope(ϕ) ⊆ G if only ϕ is domain-exact

T
(
ϕ′, scope(ϕ′)

)
∧ T

(
ϕ, G \ scope(ϕ′)

)
∧ scope(ϕ′) ⊆ G if only ϕ′ is domain-exact

T
(
ϕ, scope(ϕ)

)
∧ T

(
ϕ′, scope(ϕ′)

)
∧ scope(ϕ) ∪ scope(ϕ′) ⊆ G
∧ scope(ϕ) ∩ scope(ϕ′) = ∅

if neither ϕ nor ϕ′ is domain-exact

Figure 4. Translating Dryad terms/formulas to classical logic

heaplet is restricted to reachrec. Formally, suppose rec∆ is a recur-
sive definition w.r.t. pointer fields ~pf and stopping locations ~v, then
reachrec is recursively defined as the least fixed-point of

reachrec(x)
def
= ITE

(
x = nil ∨ x ∈ ~v, ∅, {x} ∪

⋃
pf∈~pf

(
reachrec(pf(x))

) )

For each recursive predicate p∆ defined as p∆(x)
def
= ϕp(x,~v, ~s), we

define

p(x)
def
= T

(
ϕp(x, ~v, ~s), reachp(x)

)
Similarly, for each recursive function f ∆ defined as

f ∆(x)
def
=

(
ϕ

f
1 (x,~v, ~s) : t f

1 (x, ~s) ; . . . ϕ
f
k (x,~v, ~s) : t f

k (x, ~s) ; default : t f
k+1(x, ~s)

)
we define

f (x)
def
= ITE

(
T
(
ϕ

f
1 (x,~v, ~s), reach f (x)

)
, t f−∆

1 (x, ~s)

ITE
(

T
(
ϕ

f
2 (x,~v, ~s), reach f (x)

)
, t f−∆

2 (x, ~s)

. . . , t f−∆

k+1 (x, ~s) . . .
))

where t f−∆

i (x, ~s) is just the classical logic counterpart of t f
i (x, ~s),

when interpreted in a heap domain within reach f (x). Formally it is
short for

ITE
(
scope(t f

i (x, ~s)) ⊆ reach f (x), T
(
t f
i (x, ~s), scope(t f

i (x, ~s))
)
, undef

)
Now for each set of recursive definitions Def ∆ in Dryad, we can

translate it to a set of recursive definitions Def in classical logic.

Theorem 5.1. Let ϕ be a Dryad formula w.r.t. a set of recursive
definitions Def ∆. For every program state C with heap domain Loc,
and for every interpretation of variables I including a valuation
for set-variable G, (C, I) |= T (ϕ, G) w.r.t. Def if and only if
(C |G, I \ {G}) |= ϕ w.r.t. Def ∆. �



P :− P ; P | stmt
stmt :− u := v | u := nil | u := v.pf | u.pf := v

| j := u.df | u.df := j | j := aexpr
| u := new | free u | assume bexpr
| u := f (~v,~z) | j := g(~v,~z)

aexpr :− int | j | aexpr + aexpr | aexpr − aexpr
bexpr :− u = v | u = nil | aexpr ≤ aexpr

| ¬bexpr | bexpr ∨ bexpr

Figure 5. Syntax of programs

6. Natural Proofs for Dryad
In this section we show how Dryad can be used in reasoning about
the correctness of imperative heap-manipulating programs, in terms
of verifying Hoare-triples where the pre- and post-conditions are
expressed in Dryad. We first introduce a simple programming lan-
guage and the corresponding Hoare-triples, generate a classical
logic formula as the verification condition, utilizing in part the
translation defined in Section 5. Then we present the natural proof
framework which consists of two steps. In the first step, we utilize
the idea of unfolding across the footprint to strengthen the verifica-
tion condition. In the second step, we prove the validity of the VC
soundly using the technique of formula abstraction.

6.1 Programs and Hoare-triples
We consider straight-line program segments that do destructive
pointer-updates, data-updates and procedure calls. Parameterized
by a set of pointer fields PF and a set of data-fields DF, the syntax
of the programs is defined in Figure 5, where pf ∈ PF, f ∈ DF, u
and v are program variables of type location, j and z are program
variables of type integer, int is an integer constant. To simplify the
presentation, we assume all program variables are local and are
either pre-assigned or assigned once in the program.

We allow two kinds of recursive procedures, one returning a
location f (~v,~z) and one returning an integer g(~v,~z). Each proce-
dure/program is annotated with its pre- and post-conditions in
Dryad. The pre-condition is denoted as a formula ψpre(~v,~z, ~c),
where ~v and ~z are variables as the formal parameters/program vari-
ables, ~c is a set of implicitly existentially quantified complimentary
variables (e.g., variable K in the pre-condition ϕpre in Figure 1).
The post-condition is denoted as a formula ψpost(ret,~v,~z, ~c), where
ret is the variable representing the returned value, of corresponding
type, ~v and ~z are program variables, ~c is a set of complimentary
variables that have appeared in the pre-condition ψpre.

Given a straight-line program with its pre- and post-conditions
{ψpre} P {ψpost}, we define its partial correctness without considering
memory errors3: P is partially correct iff for every normal execution
(memory-error free) of P, which transits state C to state C′, if
C |= ψpre, then C′ |= ψpost.

Given a Hoare-triple {ψpre} P {ψpost} as defined above, a set of
recursive definitions and a set of annotated procedure declarations
are presented here. Assume that P consists of n statements, then
consider a normal execution E, which can be represented as a se-
quence of program states (C0, . . . ,Cn), where each Ci = (Ri, si, hi)
represents the program state after executing the first i statements.
The verification condition is just a formula interpreted on a state se-
quence (C0, . . . ,Cn). Let pfi : Loc → Loc be the function mapping
every location l to its pf pointer, i.e., pfi(l) = hi(l, pf) for every loca-
tion l. Similarly, dfi : Loc→ Int is defined such that dfi(l) = hi(l, df)
for every l. Recall that every program variable is either pre-assigned
or assigned once in the program, each si is an expantion of the pre-
vious one, and sn is the store with all program variables defined.

3 We exclude memory errors in order to simplify the presentation. Memory
errors can be handled using a similar VC generation for assertions that
negate the conditions for memory errors to occur.

Hence we simply use v to denote sn(v). Moreover, every recursive
predicate/function is also indexed by i. For example, pi is the recur-
sive predicate such that pi(l) is true iff Ci |= T (p∆(l), reachsetp(l)).
Now for every formula ϕ and every index i, we can give the index
i to all the pointer fields, data fields and recursive definitions. We
denote the indexed formula as ϕ[i].

We algorithmically derive the verification condition ψVC corre-
sponding to it in classical logic with recursive definitions on the
global heap (the algorithm is quite involved, and is presented in
Appendix A in the supplemental material ).

Theorem 6.1. Given a Hoare-triple {ψpre} P {ψpost}, assume that
each procedure call in P satisfies its associated pre- and post-
conditions. Then the triple is valid if the formula ψVC derived above
is valid. Moreover, when P contains no procedure calls, the triple
is valid iff ψVC is valid.

Proof. Presented in Appendix B in the supplemental material. �

6.2 Unfolding Across the Footprint
The verification condition obtained above is a quantifier-free for-
mula involving recursive definitions and the reachable sets of the
form reachp(x), which are also defined recursively. While these re-
cursive definitions can be unfolded ad infinitum, we exploit a proof
tactic called unfolding across the footprint. Intuitively, the footprint
is the set of locations explored by the program explicitly (not in-
cluding procedure calls). More precisely, a location is in the foot-
print if it is dereferenced explicitly in the program. The idea is to
unfold the recursive definitions over the footprint of the program,
so that recursive definitions on the footprint nodes are related, as
precisely as possible, to the recursive definitions on frontier nodes.
This will enable effective use of the formula abstraction mecha-
nism, as when recursive definitions on frontier nodes are made un-
interpreted, the unfolding formulas ensure tight conditions that the
frontier nodes have to satisfy.

Furthermore, to enable effective frame reasoning, it is also nec-
essary to strengthen the verification condition with a set of in-
stances of the frame rule. More concretely, we need to capture the
fact that a recursive definition (or a field) on a location is unchanged
during a segment or procedure call of the program, if the reachable
locations (or only the location itself) are not affected by the segment
or procedure call.

We incorporate the above facts formally into the verification
condition. Let us introduce a macro function fp that identifies the
location variables that are in (or aliased to something in) the foot-
print. The footprint of P, FP, is the set of dereferenced variables
in P (we call a location variable dereferenced if it appears on the
left-hand side of a dereferencing operator “.” in P). Then fp(u) ≡∨

v∈FP(u = v).
Now we state the unfoldings and framings using a formula

UnfoldAndFrame. Assume there are m procedure calls in P, then
P can be divided into m + 1 basic segments (subprograms without
procedure calls): S 0 ; g1 ; S 1 ; . . . ; gm ; S m where S d is the
(d + 1)-th basic segment and gd is the d-th procedure call. Then

UnfoldAndFrame ≡
∧
rec

∧
0≤d≤m

∧
u∈LVars∪{nil}

[
( (

fp(u) ∨ u=nil
)
⇒

(
Unfoldrec

d (u) ∧ FieldUnchangedd(u)
) )
∧( (

¬fp(u) ∨ u=nil
)
⇒ RecUnchangedrec

d (u)
) ]

The formula enumerates every recursive definition rec and every
index d, and for each location u that is either pointed to by a lo-
cation variable or is nil, the formula checks if u is in the footprint,
and then unfolds it or frames it accordingly. If u is in the foot-
print, then we unfold rec for the timestamps before and after S d
(represented by the formula Unfoldrec

d (u) ); moreover, all fields of



u are unchanged if it is not affected during calling gd (represented
by the formula FieldUnchangedd(u) ). If u is not in the footprint,
i.e., in the frontier, then rec and its corresponding reach set reachrec

are unchanged after executing S d, if S d does not modify any loca-
tion in reachrec; they are also unchanged if reachrec is not affected
by calling gd. These frame assertions are represented by the for-
mula RecUnchangedrec

d (u). All the sub-formulas mentioned above
are formulated in Appendix C in the supplemental material.

Now we can strengthen the verification condition by incorporat-
ing the derived formula above:

ψ′VC ≡ ψVC ∧ UnfoldAndFrame

Since the incorporated formula is implied by the verification
condition, we can reduce the validity of ψVC to the validity of ψ′VC.

Theorem 6.2. Given a Hoare-triple {ψpre} P {ψpost}, its verification
condition ψVC is valid if and only if ψ′VC is valid. �

6.3 Formula Abstraction
While checking the validity of the strengthened verification condi-
tion ψ′VC is still undecidable, as we argued before, it is often suffi-
cient to prove it by assuming that the recursive definitions are arbi-
trary, or uninterpreted. Moreover, the uninterpreted formula falls in
the array property fragment [12], whose satisfiability is decidable
and is supported by modern SMT solvers such as Z3 [17]. This tac-
tic roughly corresponds to applying unification in proof systems.

To prove ψ′VC, we first replace each recursive predicate recd with
an uninterpreted predicate ˆrecd, and replacing the corresponding
reach-set function reachrec

d with an uninterpreted function ˆreach
rec
d .

Let the result formula be ψabs
VC. This conversion, called formula

abstraction, is sound: if ψabs
VC is valid, so is ψ′VC. When a proof for

ψabs
VC is found, we call it a natural proof for ψ′VC (and also for ψVC).

The formula abstraction step is the only step that introduces in-
completeness in our framework, but helps us transform the verifi-
cation condition to a decidable theory. Formula abstraction (com-
bined with unfolding recursive definitions across the footprint) dis-
covers recursive proofs where the recursion is structural recursion
on the definitions of the data-structures. The use of these tactics
comes from the observation that such programs often have such
recursive proofs (see [39] also for use of formula abstractions).

Our goal now is to check the satisfiability of ¬ψabs
VC in a decidable

theory. The resulting formula can be expressed using the theory of
maps (to model sets) and corresponding map operations to model
set operations. Formulas of the kind S 1 ≤ S 2, where S 1 and S 2
are sets/multi-sets of integers, are the only ones that introduce
quantification, but they can be translated to formulas in the array
property fragment, which is decidable [12]. We hence obtain a
formula ψAPF in the array property fragment combined with the
theory of uninterpreted functions, maps, and arithmetic (details are
in Appendix D in the supplementary material).

Theorem 6.3. Given a Hoare-triple {ψpre} P {ψpost}, if the derived
array formula ψAPF is satisfiable, then the Hoare-triple is valid. �

User-provided axioms:
While natural proofs are often effective in finding recursive proofs
that unfold recursive definitions and do unification, they are not
geared towards finding relationships between various recursive def-
initions themselves. We hence require the user to provide certain
obvious relationships between the different recursive definitions as
axioms. For example, lseg(x, y) ∗ list(y) ⇒ list(x) is such an ax-
iom saying that a list segment concatenated with a list yields a
list. Note that these axioms are not program-dependent, and hence
are not program-specific tactics that the user provides. These ax-
ioms are necessary typically to relate partial data-structure proper-
ties (like list segments) to complete ones (like lists), especially in

Data-structure Routine Time (s)
/ Routine

Singly- find rec, insert front,
< 1sLinked List insert back rec, delete all rec,

copy rec, append rec, reverse iter

Sorted List

find rec, insert rec, merge rec,
< 1sdelete all rec, insert sort rec,

reverse iter, find last iter
insert iter 1.4
quick sort iter 64.8

Doubly- insert front, insert back rec,
< 1sLinked List delete all rec, append rec,

mid insert, mid delete, meld

Cyclic List insert front, insert back rec,
< 1s

delete front, delete back rec

Max-Heap heapify rec 8.8

BST

find rec, find iter, insert rec,
< 1s

delete rec, remove root rec
insert iter 72.4

find leftmost iter 4.7
remove root iter 65.6
delete iter 225.2

Treap
find rec, delete rec < 1s

insert rec 12.7
remove root rec 9.5

AVL-Tree

balance, leftmost rec < 1s
insert rec 4.1
delete rec 13.9

RB-Tree

insert rec 73.9
insert left fix rec 8.1
insert right fix rec 5.1

delete rec 12.1
delete left fix rec 7.6
delete right fix rec 5.5
leftmost rec < 1s

Binomial find min rec 1.1
Heap merge rec 152.7

Schorr-Waite
marking iter < 1s(for trees)

Tree inorder tree to list rec 2.4

Traversals inorder tree to list iter 42.7
preorder rec, postorder rec < 1s

inorder rec 3.76

Figure 6. Results of verifying data-structure algorithms. (more
details at http://www.cs.uiuc.edu/˜madhu/dryad/sl/ )

iterative programs (as opposed to recursive ones), and we can fix
them for each class of data-structures. We also allow the use of the
separating implication, −∗, from separation logic while specifying
these axioms. User-defined axioms are instantiated, using the nat-
ural proof philosophy, on precisely the footprint nodes uniformly,
and get translated to quantifier-free formulas.

7. Experimental Evaluation
We have implemented a prototype of the natural proof methodol-
ogy for Dryad presented in this paper. The prototype verifier takes
as input a set of user-defined recursive definitions, a set of pro-
cedure declarations with contracts, and a set of straight-line pro-
grams (or basic blocks) annotated with a pre-condition and a post-
condition specifying a set of partial correctness properties includ-
ing structural, data and separation requirements. Both the contracts
and pre-/post-conditions are written in Dryad. For each basic block,
the verifier automatically generates the abstracted formula ψAPF as
described in Section 6, and passes ψAPF to Z3 [17], a state-of-the-
art SMT solver, to check the satisfiability in the decidable theory of
array property fragment. The front-end of our verifier is based on

http://www.cs.uiuc.edu/~madhu/dryad/sl/


ANTLR and our tool is around 4000 lines of C# code. Using the
verifier, we successfully proved the partial correctness of 59 rou-
tines over a large class of programs involving heap data structures
like sorted lists, doubly-linked lists, cyclic lists and trees. Addi-
tionally, we pit our natural proofs methodology against real-world
programs and successfully verified, in total, 47 routines from dif-
ferent projects including the list and queue implementations in the
Glib open source library, the OpenBSD library, the Linux kernel
and the memory regions and the page cache implementations from
two different operating systems. Experimental details are available
at http://www.cs.uiuc.edu/˜madhu/dryad/sl/ .

We conducted the experiments on a machine with a dual-core,
2.4GHz CPU and 6GB RAM. The first part of our experimental
results is tabulated in Figure 6. In general, for every routine, we
checked the properties formalizing the complete verification of the
routines— capturing the precise structure of the resulting heap-
structure, the precise change to the data stored in the nodes and
the precise heaplet modified by the respective routines.

For every routine, the suffix rec or iter indicates if the routine
was implemented recursively or iteratively using while loops. The
names for most of the routines are self-descriptive. Routines like
find, insert, delete, append, etc. are the natural implementa-
tions of the corresponding data structure operations. The routine
delete all for singly-linked lists, sorted lists and doubly-linked
lists recursively deletes all occurrences of a particular key in the
input list. The max-heap routine heapify accepts an almost max-
heap in which the heap property is violated only at the root, both
of whose children are max-heaps, and recursively descends the tree
to restore the max-heap property. The routine remove root for bi-
nary search trees and treaps is an auxiliary routine which is called
in delete. Similarly, the routines leftmost for AVL-trees and
RB-trees and delete fix and insert fix for RB-trees are also
auxiliary routines.

Schorr-Waite is a well-known graph marking algorithm which
marks all the reachable nodes of the graph using very little addi-
tional space. The algorithm achieves this by manipulating the point-
ers in the graph such that the stack of nodes along the path from the
root is encoded in the graph itself. The Schorr-Waite algorithm is
used in garbage collectors and it is traditionally considered as a
challenging problem for verification [19]. The routine marking is
an implementation of Schorr-Waite for trees [24] and we check the
property that the resulting output tree is well-marked.

The routines inorder tree to list construct a list consisting
of the keys of the input tree, which is traversed inorder. The itera-
tive version of this algorithm achieves this by maintaining a work-
list/stack of sub-trees which remain to be processed at any given
time. The routines inorder, preorder and postorder number
the nodes of an input tree according to the inorder, preorder and
postorder traversal algorithm, respectively.

Figure 7 shows the results of applying natural proofs to the
verification of various other real world programs and libraries.
Glib is the low-level C library that forms the basis of the GTK+
toolkit and the GNOME desktop environment, apart from other
open source projects. Using our prototype verifier, we efficiently
verified Glib implementation of various routines for manipulating
singly-linked and doubly-linked lists. We also verified the queue
library which forms part of the OpenBSD operating system.

ExpressOS is an operating-system/browser implementation
which provides security guarantees to the user via formal verifica-
tion [29]. The module cachePagemaintains a cache of the recently
used disc pages. The cache is implemented as a priority queue
based on a sorted list. We prove that the methods add cachepage
and lookup prev (both called whenever a disc page is accessed)
maintain the sortedness property of the cache page.

Example Routine Time (s)
/ Routine

glib/gslist.c

free, prepend, concat,

< 1s

Singly

insert before, remove all,

Linked-List

remove link, delete link,

LOC: 1.1K

copy, reverse, nth,
nth data, find, position,
index, last, length

append 4.9
insert at pos 11.4
remove 3.1

insert sorted list 16.6
merge sorted lists 6.1

merge sort 3.0
glib/glist.c free, prepend, reverse,

< 1sDoubly nth, nth data, position,
Linked-List find, index, last,
LOC: 0.3K length

OpenBSD/queue.h

simpleq init,
< 1s

Queue

simpleq remove after

LOC: 0.1K

simpleq insert head 1.6
simpleq insert tail 3.6
simpleq insert after 18.3
simpleq remove head 2.1

ExpressOS/cachePage.c lookup prev 2.4
LOC: 0.1K add cachepage 6.4
ExpressOS/ memory region init < 1s

memoryRegion.c create user space region 3.6
LOC: 0.1K split memory region 5.8

linux/mmap.c find vma, remove vma,
< 1s

LOC: 0.1K remove vma list
insert vm struct 11.6

Figure 7. Results of verifying open-source libraries. (more details
at http://www.cs.uiuc.edu/˜madhu/dryad/sl/ )

In an OS kernel, a process address space consists of a set of
intervals of linear addresses represented as a memory region. In
the ExpressOS implementation, a memory region is implemented
as a sorted doubly-linked list where each node of the list with a
start and an end address represents an interval included in the ad-
dress space. We also verified some key components of the Linux
implementation of a memory region, present in the file mmap.c. In
Linux, a memory region is represented as a red-black tree where
each node, again, represents an address interval. We proved meth-
ods which find, remove and insert a vma struct (vma is short for
virtual memory address) into a memory region.

It also worth mentioning that in the process of experiments,
we did make some unintentional mistakes, in writing both the ba-
sic blocks and the annotations. For example, forgetting to free the
deleted node, or using ∧ instead of ∗ in the specification between
two disjoint heaplets, were common mistakes. In these cases, Z3
provided counter-examples to the verification condition that cap-
tured the essence of the bugs, and turned out to be very helpful for
us to debug the specification. These debugging hints are usually not
available in other incomplete proof systems.

Our experiments show that the natural proof methodology set
forth in this paper is successful in efficiently proving full-functional
correctness of a large variety of algorithms. Most of the VCs gen-
erated for the above examples were discharged by Z3 in a few sec-
onds. To the best of our knowledge, this is the first automatic mech-
anism that can prove such a wide variety of algorithms correct, han-
dling such complex properties of structure, data and separation.
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