
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

KJS: A Complete Formal Semantics of JavaScript

Daejun Park Andrei S, tefănescu Grigore Ros, u
University of Illinois at Urbana-Champaign
{dpark69,stefane1,grosu}@illinois.edu

Abstract
This paper presents KJS, the most complete and throughly tested
formal semantics of JavaScript to date. Being executable, KJS
has been tested against the ECMAScript 5.1 conformance test
suite, and passes all 2,782 core language tests. Among the existing
implementations of JavaScript, only Chrome V8’s passes all the
tests, and no other semantics passes more than 90%. In addition to a
reference implementation for JavaScript, KJS also yields a simple
coverage metric for a test suite: the set of semantic rules it exercises.
Our semantics revealed that the ECMAScript 5.1 conformance test
suite fails to cover several semantic rules. Guided by the semantics,
we wrote tests to exercise those rules. The new tests revealed bugs
both in production JavaScript engines (Chrome V8, Safari WebKit,
Firefox SpiderMonkey) and in other semantics. KJS is symbolically
executable, thus it can be used for formal analysis and verification
of JavaScript programs. We verified non-trivial programs and found
a known security vulnerability.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

General Terms Languages, Standardization, Verification

Keywords JavaScript, mechanized semantics, K framework

1. Introduction
JavaScript is the most popular client-side programming language.
Recently, JavaScript has started to be used in not only client-
side, but also server-side programming [30], and even beyond
web applications [26, 46]. Despite its popularity, JavaScript suffers
from several language design inconsistencies [8], which can lead to
security vulnerabilities. Nontransparent behaviors are good targets
for attackers [17, 41]. To address the utmost importance of security
in web applications, there have been several formal analysis studies
proposed recently for JavaScript [2, 20, 21, 36, 45], but these
address fragments of the language and are not fully validated with
a complete, formal JavaScript semantics. Guha et al. [22] admit
they cannot show their static analysis sound due to the absence of a
complete formal semantics of JavaScript.

[Copyright notice will appear here once ’preprint’ option is removed.]

1.1 Why Yet Another JavaScript Semantics?
A formal semantics should serve as a solid foundation for JavaScript
language development, so it must be correct and complete (to be
trusted and useful), executable (to yield a reference implementation),
and appropriate for program reasoning and verification.

Several efforts to give JavaScript a formal semantics have been
made, most notably by Politz et al. [36] and Bodin et al. [3]. Unfor-
tunately, no existing semantics comes close to having the desired
properties mentioned above. First, as shown in Tables 1 and 2, they
are incomplete and contain errors. Second, they require different
formalizations for different purposes, e.g., an operational/computa-
tional semantics for execution and a axiomatic/declarative semantics
for deductive reasoning. Having to define two or more different se-
mantics for a real-life language, together with proofs of equivalence,
is a huge burden in itself, not to mention that these all need to be
maintained as the language evolves. Third, due to the functional
nature of their interpreters, these semantics cannot handle the non-
determinism of JavaScript well. Finally, their interpreters are not
suited for symbolic execution, and thus for developing program
reasoning tools. We discuss existing semantics in Section 6.

For these reasons, we developed yet another JavaScript semantics
in order to have a single, clean-slate semantics that can be used not
only as a reference model for JavaScript, but also to develop formal
analysis tools for it. We employed K [43] (http://kframework.
org) as the formalism medium. In K, a language semantics is
described as a term rewriting system. At no additional cost, K
provides an execution engine, which yields an interpreter for the
defined language, as well as a sound and relatively complete
deductive verification system based on symbolic execution, which
can be used to reason about programs.

1.2 Challenges in Formalizing JavaScript
JavaScript is an unusual language, full of tricky corner cases.
Like HTML, JavaScript programs do not easily fail. Seemingly
nonsensical programs work by design, i.e., they have properly
defined semantics according to the language standard. Completely
defining all of the corner cases is highly non-trivial, especially
because the language standard, a 250-page English document,
contains various ambiguities and unspecified behaviors (which have
led to divergence between JavaScript implementations). To handle
these difficulties, we decided to make our semantics executable, so
that we can test our semantics incrementally. Incremental testing
allowed us to eliminate ambiguities one by one and to enhance our
understanding of JavaScript’s corner cases.

JavaScript is complex. Beside typical difficulties of scripting
languages such as dynamic (implicit) casting and the eval construct,
the latest standard ECMAScript 5.1 introduced new features such as
the strict mode and explicit getters/setters. The mixed use of the strict
and non-strict modes, and of the data and accessor (getter/setter)
properties, makes it inevitable to have complex case analyses in
the semantics. For example, Figure 1 describes the “simple” object

KJS: A Complete Formal Semantics of JavaScript 1 2015/4/28

http://kframework.org
http://kframework.org

Figure 1. Semantics of Object Property Update: o.x = v;

property update o.x = v semantics at a high-level, showing how
many cases need to be distinguished: o is a normal object or not;
o is extensible or not; x is inherited or not; x is writable or not;
x is an accessor property or not; the code is strict or not. To keep
better track of all such special cases, we chose to systematically,
almost mechanically translate the language standard as is into formal
semantics (as opposed to defining what we thought JavaScript ought
to be doing).

JavaScript is non-deterministic. For example, the for-in con-
struct iterates through all the enumerable properties of a given ob-
ject non-deterministically. The enumeration order is unspecified,
implementation-dependent, and may vary for different iterations
of a for-in loop. Formalizing JavaScript’s non-determinism in a
semantics that has all the desirable properties listed at the beginning
of Section 1.1 is non-trivial. A collection semantics defined as an
inductive relation can capture non-determinism easily, but is unsuit-
able for execution, while a semantics defined as an eval function is
suitable for execution but cannot capture non-determinism naturally.
Rewriting Logic [31] is a sweet spot, as it can effectively define,
execute, and reason about non-deterministic specifications.

1.3 Contribution and Approach
Our main contribution is KJS, a JavaScript formal semantics:

• KJS is the most complete and thoroughly tested formal JavaScript
semantics to date, specifically of ECMAScript 5.1, the latest
language standard. It has been tested against the ECMAScript
conformance test suite, and passed all 2,782 test programs for
the core language. Table 1 shows that KJS is far more complete
than any other semantics, and even more standards-compliant
than production JavaScript engines such as Safari WebKit and
Firefox SpiderMonkey.

• KJS closely resembles the language standard (see Figure 2),
which facilitates visual inspection, and allows to measure the
semantic coverage of a test suite. We found that the ECMAScript
5.1 conformance test suite misses several semantic behaviors
described in the language standard. We wrote tests for the un-
covered semantics and discovered a number of bugs both in
production JavaScript engines and in existing formal semantics.
Measuring conformance test suite coverage has been considered
infeasible in [5, 6, 13], because JavaScript implementations are
highly optimized and do not follow the standard document line
by line. KJS thus paves a way for the JavaScript language stan-
dard committee to systemically measure the semantic coverage
of their conformance test suite.

• KJS has been defined in a style that is suitable also for reasoning
about JavaScript programs. We have verified several non-trivial

programs and demonstrated how KJS can be used for finding a
security vulnerability (Section 5).

1.4 Outline
Section 2 recalls ECMAScript and K. Section 3 discusses KJS, our
semantics of JavaScript. Section 4 elaborates on our evaluation of
KJS and the development costs, and Section 5 discusses applications
of KJS. Section 6 discusses related work and Section 7 concludes.

The complete KJS semantics of JavaScript, as well as all the
artifacts discussed in the paper are available for download at:

https://github.com/kframework/javascript-semantics

2. Preliminaries
We here briefly explain ECMAScript 5.1, the latest JavaScript
standard, and the K framework, a semantics engineering tool in
which we chose to formalize our semantics.

2.1 ECMAScript 5.1
ECMAScript is the official JavaScript language standard. The latest
version is ECMAScript 5.1 [11]. Compared to the previous version,
ECMAScript 3,1 ECMAScript 5.1 adds new features for more robust
programming such as the strict mode, better integration with the
DOM object such as accessor (getter/setter) properties, and new
APIs such as JSON. The upcoming version ECMAScript 6 [12],
under active development, will add new features such as classes,
modules, iterators and collections, and generators and promises (for
asynchronous programming).

ECMAScript 5.1 specifies not only the language core but also
standard libraries. It consists of 16 chapters and 6 appendices, for a
total of 258 pages. Chapters 1-5 give an overview of the language;
Chapters 6-7 describe lexing and parsing; Chapter 8 describes
runtime types such as string, number, and object; Chapter 9 discusses
type conversions; Chapter 10 covers environments and execution
contexts; Chapters 11-14 and 16 describe the semantics of language
constructs: expressions, statements, functions, programs, and errors;
Chapter 15 presents the standard libraries; Appendix A is dedicated
to the language grammar and Appendix B compatibility.

ECMAScript 5.1 gives algorithmic descriptions for all language
constructs, to precisely specify their behaviors. It also defines
various internal semantic functions, called abstract operations, to
effectively describe high-level language constructs. For example,
Figure 2(a) presents an abstract operation, [[Get]], which takes an
object O and a property name P, and returns P’s value of O. This

1 ECMAScript 4 was abandoned due to fundamental disagreements between
the committee members [10].

KJS: A Complete Formal Semantics of JavaScript 2 2015/4/28

https://github.com/kframework/javascript-semantics

When the [[Get]] internal method of O is called with property name P,
the following steps are taken:

1. Let desc be the result of calling the [[GetProperty]] internal method
of O with property name P.

2. If desc is undefined, return undefined.

3. If IsDataDescriptor(desc) is true, return desc.[[Value]].

4. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter
be desc.[[Get]].

5. If getter is undefined, return undefined.

6. Return the result calling the [[Call]] internal method of getter
providing O as the this value and no arguments.

(a) ECMAScript 5

rule Get(O:Oid,P:Var)
=> Let $desc = GetProperty(O,P); /* Step 1 */

If $desc = Undefined then {
Return Undefined; /* Step 2 */

};
If IsDataDescriptor($desc) = true then {

Return $desc."Value"; /* Step 3 */
};
Let $getter = $desc."Get"; /* Step 4 */
If $getter = Undefined then {

Return Undefined; /* Step 5 */
};
Return Call($getter,O,Nil); /* Step 6 */

(b) KJS

Figure 2. Correspondence between ECMAScript 5 and KJS semantics

property lookup function precisely describes its behavior by using an
informal pseudo-code algorithm. It also interacts with other internal
semantic functions such as [[GetProperty]] and IsDataDescriptor.

2.2 The K Framework
K [43] (http://kframework.org) is a framework for defining
language semantics. Given a syntax and a semantics of a language,
K generates a parser, an interpreter, as well as formal analysis
tools such as model checkers and deductive program verifiers,
at no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the efficiency
of semantics developments. Furthermore, the formal analysis tools
facilitate formal reasoning about the given language semantics. This
helps both in terms of applicability of the semantics and in terms
of engineering the semantics itself; for example, the state-space
exploration capability helps the language designer cover all the non-
deterministic behaviors of certain constructs or combinations of
them in the language definition.

We briefly describe K here and refer the reader to [39, 43] for
more details. In K, a language syntax is given using conventional
Backus-Naur Form (BNF). A language semantics is given as a
transition system, specifically a set of reduction rules over con-
figurations. A configuration is an algebraic representation of the
program code and state. Intuitively, it is a tuple whose elements
(called cells) are labeled and possibly nested. Each cell represents a
semantic component such as stores, environments, and threads that
are used in defining semantics. A special cell, named k, contains a
list of computations to be executed. A computation is essentially
a program fragment, while the original program is flattened into a
sequence of computations. A rule describes a one-step transition
relation between configurations, thus giving semantics to language
constructs. Rules are modular; they mention only relevant cells that
are needed in each rule. For example, a property lookup semantics
can be defined as the following K rule:〈

O [P]

V
···

〉
k 〈〈O〉 oid 〈··· P 7→ V ···〉 properties ···〉 obj

The cells are represented with angle brackets notation. The horizon-
tal line represents a reduction (i.e., a transition relation). A cell with
no horizontal line means that it is read but not changed by the rule.
The rule above mentions two cells: k, and obj. The k cell contains
a list of computations to be executed, and the obj cell represents
an object. The obj cell contains several sub-cells: e.g., the oid cell
contains the object identifier and the properties cell stores a map
from property names to values. This rule is applied when the current
computation (top of the k cell) is a property lookup and there exists
an obj cell whose oid is matched with O and properties contains the

property name P. This rule resolves the property lookup O[P] to the
property value V. The “...” is a structural frame, that is, it matches
the portions of a cell that are neither read nor written by the rule.

One of the most appealing aspects of K is its modularity. It is
very rarely the case that one needs to touch existing rules in order to
add a new feature to the language. This is achieved by structuring the
configuration as nested cells and by requiring the language designer
to mention only the cells that are needed in each rule, and only
the needed portions of those cells. For example, the above rule
only refers to the k and obj cells, while the entire configuration
contains many more cells (Figure 3). This modularity makes for
compact and human readable semantics, and also helps with the
overall effectiveness of the semantics development. For example,
even if new cells are later added to configuration, to support new
features, the above rule does not change.

Another appealing aspect of K is its inherent support for non-
determinism. As K is based on rewriting logic [31], one can easily
define, execute, and reason about non-deterministic specifications
in K. For example, a simplified for-in loop semantics2 can be
defined as the following K rules:

for I in E Es { S }

I = E ; S ; for I in Es { S }

for I in ·Set { S }

·

Suppose that for-in loop non-deterministically iterates through the
given elements. In K, such non-determinism can be easily described
by representing the elements as a set and using set matching,
which gives us the desired set-theoretical ‘choice’ operation. In
the above semantics, ‘E Es’ represents the set of elements to be
iterated through, where E refers to an arbitrary element of the
set, and Es the remaining elements. The rule in the left-hand side
says that it chooses an arbitrary element E, runs the loop body
S with the element, and proceeds to the next iteration with the
remaining elements Es. The rule in the right-hand side specifies the
termination condition of the loop. This way, one can easily describe
and execute non-deterministic semantics. Furthermore, using K’s
‘search’-mode execution, one can explore all possible execution
traces, in this case all possible iteration orders.

3. KJS: Formal Semantics of JavaScript in K
KJS faithfully describes ECMAScript 5.1 in K. It defines the core
language semantics, and also several standard libraries. KJS is
systematically derived from, and has a close correspondence with,
the language standard.

2 The for-in construct of JavaScript has a more complex semantics; by
these sample rules, we here only mean to illustrate K’s capabilities.

KJS: A Complete Formal Semantics of JavaScript 3 2015/4/28

http://kframework.org

〈 〈K〉 k 〈〈〈IDobj〉 oid 〈Var 7→ ValProp〉 properties 〈Var 7→ ValProp〉 internalProperties〉 obj∗〉 objs
〈〈〈IDenv〉 eid 〈IDenv〉 outer 〈Bool〉 strict 〈Var 7→ ValEnv〉 declEnvRec? 〈〈IDobj〉 bindingObj 〈Bool〉 provideThis〉 objEnvRec?〉 env∗〉 envs

〈〈〈Listrunning〉 activeStack 〈〈IDenv〉 lexicalEnv 〈Val〉 thisBinding 〉 running〉 ctx 〈Listctrl〉 excStack 〈List〉 pseudoStack〉 ctrl

〉
T

Figure 3. Configuration

3.1 Program Configuration
Figure 3 shows the KJS configuration, or state, which holds objects,
environments, and the execution context.

Objects An object is a map from property names to values with
attributes. Each object is connected with another object via a
[[Prototype]] link. An object inherits other objects along with the
prototype chain. In the configuration, an object is represented by
an obj cell. The “*” appearing next to the obj cell name in the
configuration tells K that zero, one or more cells with that name can
occur at that position in the configuration. An obj is identified by
oid, and contains two maps: properties and internalProperties. The
properties stores user-level properties, while internalProperties is
for internal use only.

Environments An environment is a map from variables to values.
Each environment is created when the program control enters a
new scope, and is connected with its outer scope environment. The
environment remains even after the program control exits from the
scope. In the configuration, an environment is represented by the
env cell. An env is identified by eid and contains an outer link and
a declEnvRec map. In case of the global scope and the with block,
however, the env has an objEnvRec map instead of declEnvRec. A
“?” appearing next to a cell name tells K that zero or one cells with
that name can appear in the configuration at that position.

Execution context An execution context consists of an environ-
ment and the this value. A new execution context is created when-
ever the program control enters a function, and discarded when the
function returns. In the configuration, the current execution context
is represented by the running cell. When a new execution context is
created, the current one is pushed into the activeStack cell (struc-
tured as a list).

3.2 Semantics Description Language
KJS essentially defines two languages: the JavaScript language
and its semantics description language. ECMAScript 5.1 presents
semantic behaviors in pseudo-code; see Figure 2. To faithfully
describe them, we first formally define this pseudo-code language,
which is a minimal imperative language with let-bindings and
branches. It does not have loops, since iteration can be achieved by
recursively applying rules.

3.3 Semantics of Language Constructs
We define the semantics of each language construct by systemati-
cally translating its informal algorithmic description in the language
standard into formal pseudo-code as defined in Section 3.2. Figure 2
shows an example of the translation. Each step of (a) is translated to
its corresponding pseudo-code statement of (b). For example, step 1

Let desc be the result of calling the [[GetProperty]] internal method
of O with property name P.

is translated to the formal definition of (b):

Let $desc = GetProperty(O,P);

This approach not only contributes to the faithfulness of our seman-
tics, but also expedites the semantics development.

We only describe a few relevant or interesting constructs.

var base = Object.create(Object.prototype, {
y : {value:0, enumerable:false,configurable:true} });

var derived = Object.create(base, {
x : {value:1, enumerable:true, configurable:true},
y : {value:2, enumerable:true, configurable:true} });

var i = 0;
for (var k in derived) {

if (i === 0) delete derived.y;
console.log(k + ":" + derived[k] + ";"); ++i; }

Figure 4. Undefined for-in program: Safari WebKit and Chrome
V8 output x:1; y:0;, while Firefox SpiderMonkey outputs x:1;.

For-in construct The for-in construct, which iterates through
all the enumerable properties of a given object, is non-deterministic.
The enumeration order of the properties is not specified, but
implementation-dependent. A loop may have a different iteration
order even in the same program. In order to correctly specify this
non-determinism, our semantics employs the set-theoretical ‘choice’
operation to select each property non-deterministically. K provides
a ‘search’-mode execution feature which explores all possible exe-
cution traces, in this case all possible enumeration orders.

Furthermore, certain semantic behaviors are under-specified in
the language standard [44]. A property is enumerable when its
enumerable attribute is true. The iterated properties include not
only the object’s own properties, but also the inherited ones. An
inherited property, however, is excluded when it is shadowed. Also,
if a property is deleted during the iteration before it is visited,
the property is skipped. But what if a property is shadowed and
the property causing the shadowing is deleted before its visit?
Is the original property supposed to be visited? The language
standard leaves this behavior unspecified, without even stating if
it is implementation-dependent or not. The consequence is that
different JavaScript implementations have different behaviors in this
situation. Figure 4 shows a for-in loop on the derived object,
which inherits the base object shadowing the property y. In the loop,
the shadowing property derived.y is deleted before it is visited;3

the shadowed property base.y now becomes visible and can be
considered for enumeration in the next iteration. For this program,
Safari WebKit and Chrome V8 output x:1;y:0; since they decided
to visit base.y, while Firefox SpiderMonkey outputs x:1; since it
does not visit base.y whose enumerable attribute is false.

KJS makes these unspecified behaviors explicit: it reports an
‘unspecified’ error when a for-in loop encounters the unspecified
situation in Figure 4. This feature needs to be defined in order to
have a complete semantics, and can be used to check the portability
of JavaScript programs. Section 5.1 discuses this in more detail.

Exceptions While user-level exceptions (raised with throw)
are well described in ECMAScript 5.1, internal exceptions (e.g.,
ReferenceError) are not. The described exception propagation
mechanism only applies to the user-level exceptions. To define both
user-level and internal exceptions in a uniform way, KJS employs
an exception handling mechanism that is commonly used by many
programming language semantics. Figure 5 shows the essential
rules. The rule TRY starts to execute S, pushing the current execu-
tion context in the excStack cell. If an exception occurs, the rule

3 Suppose an iteration order where x is visited first.

KJS: A Complete Formal Semantics of JavaScript 4 2015/4/28

RULE TRY〈
try S catch (X) S ′

S y endtry
y K

〉
k

〈〈
·

(X ,S ′,K ,C)
_

〉
excStack C

〉
ctrl

RULE THROW〈
throw Ve y _

let X = Ve in S ′ y K

〉
k

〈〈
(X ,S ′,K ,C)

·
_

〉
excStack

_

C

〉
ctrl

RULE END-TRY〈
VS y endtry

VS

···
〉

k

〈〈
(_, _, _, _)

·
_

〉
excStack _

〉
ctrl

Figure 5. Exception semantics

THROW restores the saved context C and executes the catch block
S’. If no exception occurs, the rule END-TRY discards the saved
execution context and proceeds to the next computation.

Switch statement JavaScript’s switch has a surprising fall-
through semantics: it does not fall through at default. For example,
the following switch statement contains two regular cases and one
default with no break statement.

function foo(n) {
switch(n) { case 1: console.log("case 1;");

default: console.log("default;");
case 2: console.log("case 2;"); } }

foo(1) outputs “case 1; default; case 2;”, and foo(2) out-
puts “case 2;”. However, foo(0) outputs only “default;”, be-
cause JavaScript does not allow the fall-through at default. This
behavior is unusual compared to other programming languages in
which foo(0) would output “default; case 2;”.

Strict mode code JavaScript has a strict mode execution feature,
which also contains tricky corner cases. It was newly introduced in
the latest language standard, ECMAScript 5.1, as a workaround for
several design mistakes (e.g., the this resolution). A strict mode
execution is only applied to a strict mode code, indicated by a
‘use strict’ directive. For example, the following is a strict mode
code; its execution throws a ReferenceError exception since the
undeclared variable ‘x’ is not allowed to be used in strict mode:

‘use strict’;
eval(‘x = 1;’); // throws a ReferenceError

However, the following program, which appears to be equivalent to
the above, does not report the exception:

‘use strict’;
var myeval = eval;
myeval(‘x = 1;’); // no ReferenceError

The reason is that an eval code inherits the strict mode only when
it appears in a direct call to eval. In the first program, ‘x = 1;’
is evaluated in strict mode because eval is called directly on it.
However, in the second program, ‘x = 1;’ is evaluated in non-strict
mode because eval is called indirectly, and x is assigned 1 in the
global scope.

Function and variable declarations are evaluated before other
statements, with function declarations evaluated before variable
declarations. In combination with shadowing lack of block scoping,
unexpected results can occur. The following seemingly equivalent
functions return different values, 2 and 1:

function f1() { function f() { return 1; }
function f() { return 2; }
return f(); } // 2

function f2() { var f = function () { return 1; };
function f() { return 2; }
return f(); } // 1

This is because the first line of f2 is a variable and not a function
declaration, so is evaluated after the function declaration in the next
line, overwriting it.

Arguments objects When a function is called, an arguments ob-
ject is created holding the function’s arguments values. Modify-
ing the arguments object is allowed, but it has different seman-
tics depending on whether we are in a strict mode or not. If non-
strict, arguments is aliased with the formal parameters; if strict,
arguments has its own properties, not affecting the formal parame-
ters. For example, below f(0) returns 1 while g(0) returns 0:

function f(x) { arguments[0] = 1; return x; }
function g(x) { "use strict";

arguments[0] = 1; return x; }

Eval function The definition of the eval function is straightfor-
ward in KJS: it parses the argument and then evaluates it in the eval
execution mode. Parsing is handled by the ‘#parse’ primitive of
the K framework, which uses a parser automatically generated from
the given syntax declarations.

3.4 Standard Libraries
Although KJS aims at defining the semantics of the core JavaScript
language, we have also given semantics to some essential standard
built-in objects. For example, we completely defined the Object,
Function, Boolean, and Error objects, because they expose in-
ternals of the language semantics. Also, we partially defined the
Array, String, Number and Global objects; specifically, all their
constructors and only a group of internal methods, such as Array’s
[[DefineOwnProperty]] and String’s [[GetOwnProperty]]. These
internal methods are essential because they determine the funda-
mental behavior of their corresponding objects, so that the rest of
these objects’ behaviors can be defined entirely in JavaScript invok-
ing these internal methods, as explained shortly. Finally, we have
not given semantics to the Math, Date, RegExp, and JSON objects,
because these are orthogonal to the semantic approach and can be
implemented in plain JavaScript [7].

Figure 6 shows by means of an example our simple approach
to give semantics to built-in objects based on the already defined
internal methods: JavaScript itself. Each step of (a) is translated
to the corresponding JavaScript code of (b); Steps 1 and 3 employ
the internal methods @IsObject and @SetInternalProperty.4

KJS defines dozens of such internal methods that are difficult or
impossible to define in JavaScript. Based on these, the built-in
objects can be completely defined in JavaScript, concisely and
independently from the employed semantic formalism.

4. Evaluation
We evaluate KJS w.r.t. completeness and development cost.

4.1 Completeness
To evaluate the completeness of KJS and to measure the progress
during its development, like the authors of previous JavaScript
semantics [3, 37], we tested our semantics against the official
ECMAScript 5.1 language conformance test suite, test262 [14].
The test262 consists of 11,578 test programs which are classified
according to each of the chapters of ECMAScript 5.1. Chapters 1-5
have no tests; Chapters 6-7 have 716 tests for parsing; Chapters 8-14
have 2,782 tests for the language core; and Chapter 15 and Annex
B have 8,080 tests for standard libraries. Like previous JavaScript

4 We employ a different namespace for the internal semantic functions, using
names starting with ‘@’ which cannot appear as program variables (since
‘@’ is not an IdentifierStart character [11]). Thus we can safely introduce
internal functions without polluting the global object.

KJS: A Complete Formal Semantics of JavaScript 5 2015/4/28

15.2.3.5 Object.create (O [, Properties])

The create function creates a new object with a specified prototype. When the create
function is called, the following steps are taken:

1. If Type(O) is not Object or Null throw a TypeError exception.

2. Let obj be the result of creating a new object as if by the expression new Object()
where Object is the standard built-in constructor with that name

3. Set the [[Prototype]] internal property of obj to O.

4. If the argument Properties is present and not undefined, add own properties to obj
as if by calling the standard built-in function Object.defineProperties with
arguments obj and Properties.

5. Return obj.

(a) ECMAScript 5

Object.create = function (O, Properties) {
// Step 1
if (!(@IsObject(O) || O === null))

throw TypeError("Invalid arguments");
// Step 2
var obj = new Object();
// Step 3
@SetInternalProperty(obj, "Prototype", O);
// Step 4
if (Properties !== undefined)

Object.defineProperties(obj, Properties);
// Step 5
return obj;

};

(b) Our semantics, independent of semantic framework

Figure 6. Self-hosted standard built-in objects semantics

Formal Semantics Passed Failed % passed
KJS 2,782 0 100.0%

Politz et al. [37]6 2,470 345 87.7%
Bodin et al. [3] 1,796 986 64.6%

JavaScript Engines Passed Failed % passed
Chrome 35.0 (V8 3.25.28) 2,782 0 100.0%

Firefox 30.0 (SpiderMonkey 30) 2,780 2 99.9%
Safari 7.0.4 (WebKit 537.76.4) 2,780 2 99.9%

Table 1. Comparison of formal semantics and product engines
tested against the ECMAScript conformance test suite

semantics efforts, to keep the project manageable we targeted only
the 2,782 tests corresponding to the core language. As explained in
Section 3.4, we have also defined some essential standard built-in
objects and internal methods, so that the remaining methods can
be implemented in plain JavaScript. However, providing JavaScript
code for the hundreds of standard library methods is beyond the
scope of this paper.

Table 1 shows that KJS is the most complete JavaScript semantics
to date, passing all of the 2,782 ECMAScript 5.1 core tests. It is
even more standards-compliant than production JavaScript engines
such as Safari WebKit and Firefox SpiderMonkey. While the 2,782
tests are supposed to test the language core, several tests use library
calls, e.g. to trigonometric functions. To test such programs modulo
the unsupported libraries, we used a feature of K allowing to
employ an external library implementation; specifically, we used
the Node.js implementation of Math.sin, Number.toFixed, and
Number.toString.5 Further, to overcome some current parsing
limitations of K (acknowledged by K’s developers and scheduled
for fixing), we pre-process the input JavaScript program using the
SAFE framework [28] for automatic semicolon insertion and the
sed utility for translating unicode characters.

Currently, the K interpreter takes an hour to execute all of 2,782
test programs in a machine with Intel Core i7-4960X CPU 3.60GHz
and DDR3 RAM 64GB 1333MHz. K development team, however,
is currently working on an OCaml backend to compile K definitions
to OCaml programs for faster execution. With that, the execution
time is expected to drop from an hour to minutes.

5 Only a dozen of tests depend on this, which is not a significant number.
6 Note that S5 was tested against the previous version of the ECMAScript 5
test suite, and the total number of tests is slightly bigger than the latest one.
Also, S5 reported test results for standard libraries, which is not presented
here since we focus on the language core.

Time #Passed Main Etc Date
0 0 0 Dec 24, 2013
1 Dec 25, 2013
2 Dec 26, 2013
3 Dec 27, 2013
4 Dec 28, 2013
5 Dec 29, 2013
6 Dec 30, 2013
7 Dec 31, 2013
8 Jan 1, 2014
9 Jan 2, 2014

10 Jan 3, 2014
11 Jan 4, 2014
12 Jan 5, 2014
13 Jan 6, 2014
14 Jan 7, 2014
15 Jan 8, 2014
16 Jan 9, 2014
17 Jan 10, 2014
18 Jan 11, 2014
19 Jan 12, 2014
20 Jan 13, 2014
21 Jan 14, 2014
22 50 50 Jan 15, 2014
23 Jan 16, 2014
24 Jan 17, 2014
25 Jan 18, 2014
26 Jan 19, 2014
27 Jan 20, 2014
28 Jan 21, 2014
29 Jan 22, 2014
30 Jan 23, 2014
31 Jan 24, 2014
32 Jan 25, 2014
33 Jan 26, 2014
34 Jan 27, 2014
35 Jan 28, 2014
36 Jan 29, 2014
37 Jan 30, 2014
38 Jan 31, 2014
39 Feb 1, 2014
40 167 167 Feb 2, 2014
41 235 235 Feb 3, 2014
42 Feb 4, 2014
43 375 375 Feb 5, 2014
44 403 403 Feb 6, 2014
45 396 396 Feb 7, 2014
46 511 511 Feb 8, 2014
47 Feb 9, 2014
48 Feb 10, 2014
49 Feb 11, 2014
50 Feb 12, 2014
51 Feb 13, 2014
52 577 577 Feb 14, 2014
53 583 583 Feb 15, 2014
54 630 630 Feb 16, 2014
55 Feb 17, 2014
56 Feb 18, 2014
57 Feb 19, 2014
58 Feb 20, 2014
59 701 701 Feb 21, 2014
60 857 857 Feb 22, 2014
61 Feb 23, 2014
62 984 984 Feb 24, 2014
63 1046 1046 Feb 25, 2014
64 1132 1132 Feb 26, 2014
65 1409 1409 Feb 27, 2014
66 1466 1466 Feb 28, 2014
67 Mar 1, 2014
68 Mar 2, 2014
69 Mar 3, 2014
70 1568 1568 Mar 4, 2014
71 1683 1683 Mar 5, 2014
72 Mar 6, 2014
73 Mar 7, 2014
74 Mar 8, 2014
75 Mar 9, 2014
76 1697 1697 Mar 10, 2014
77 Mar 11, 2014
78 Mar 12, 2014
79 1898 1898 Mar 13, 2014
80 2125 2125 Mar 14, 2014
81 2262 2262 Mar 15, 2014
82 2293 2293 Mar 16, 2014
83 Mar 17, 2014
84 2338 2338 Mar 18, 2014
85 2364 2364 Mar 19, 2014
86 2640 2447 193 Mar 20, 2014
87 Apr 2, 2014
88 Apr 3, 2014
89 Apr 9, 2014
90 Apr 10, 2014
91 Apr 11, 2014
92 Apr 12, 2014
93 Apr 13, 2014
94 Apr 14, 2014
95 2720 2527 193 Apr 23, 2014
96 2727 2534 193 Apr 24, 2014
97 Apr 25, 2014
98 2734 2541 193 Apr 26, 2014
99 Apr 27, 2014

100 Apr 28, 2014
101 2739 2546 193 Apr 29, 2014
102 May 7, 2014
103 May 8, 2014
104 May 9, 2014
105 May 10, 2014
106 May 11, 2014
107 May 12, 2014
108 2732 2539 193 May 13, 2014
109 2743 2550 193 May 14, 2014
110 May 15, 2014
111 Jun 9, 2014
112 Jun 10, 2014
113 Jun 11, 2014
114 Jun 12, 2014
115 2754 2561 193 Jun 19, 2014
116 2782 2586 196 Jun 20, 2014
117
118
119
120

N
um

be
r o

f p
as

se
d

te
st

s

1000

2000

3000

Days
0 30 60 90 120

Figure 7. KJS semantics development progress

4.2 Development Cost
The development of KJS took only four months by a first year PhD
student, with no prior knowledge of JavaScript or of the K semantic
framework. We believe that this was possible thanks to the following:
(1) K’s executability, allowing us to test and fix the semantics
immediately as inconsistencies were detected; (2) Formalizing the
pseudo-code used in the language standard, which allowed us to
easily and systematically formalize the informal semantics; (3) K’s
modularity, allowing us to change the structure of the program
configuration (e.g., to add new features to the language) without
having to change the existing rules (e.g., to add exceptions we had
to add new cells to the configuration and three independent rules,
but no other rules had to be touched—Figure 5).

A side objective of our effort was to demonstrate that the
programming language semantics field has matured enough that
language designers should consider defining a complete formal
semantics to their language as part of the (long) standardization
process. It is no longer true that defining a formal semantics to a
language takes too long to be worthwhile. To bring more evidence
in this direction, we measured and logged the KJS development
progress rigorously. Figure 7 shows how many tests passed each
day during the project timeframe. In the first month we developed
the semantic foundations such as syntax, program configuration,
prototype chains, environments, and execution contexts. In the next
two months, we defined individual language constructs. Due to
the modularity of the employed framework, during this period
the number of passed tests linearly increased as each language

KJS: A Complete Formal Semantics of JavaScript 6 2015/4/28

construct was defined. In the last month we finished our semantics
by addressing specific details and corner cases revealed by failed
tests, until all of them eventually passed.

5. Applications
Here we list a few applications of our semantics, mentioning
that these were driven by our own interests and that they are by
no means exhaustive. The message we want to convey is that a
formal semantics can be useful well beyond just giving a reference
model/implementation for the defined language.

5.1 Checking Portability
As seen in Section 3.3, ECMAScript 5.1 contains unspecified
behaviors, e.g., the for-in loop. Since unspecified behaviors
are implementation-dependent, JavaScript programs may not be
portable, working differently with different JavaScript engines in dif-
ferent web browsers. Detecting unspecified behaviors in JavaScript
programs is not trivial. Simply running the program in different
JavaScript engines is not sufficient: even if they all agree on some
unspecified behavior now, this may change in future releases.

KJS can be trivially used to detect unspecified behaviors of
JavaScript programs, as it ‘gets stuck’ when no rule matches (i.e.,
no semantics exist). For the unspecified behavior in Figure 4, e.g.,
KJS gets stuck when the loop iteration encounters y, after the output
x:1;. Besides unspecified behaviors, we also need to check for non-
deterministic behaviors; e.g., to ensure that the iteration order of a
for-in loop is irrelevant. K provides a ‘search’-mode execution
feature which explores all feasible execution traces.7

5.2 Finding Bugs and Improving the Test Suite
The ECMAScript standards committee has made an impressive
effort to provide a conformance test suite that systematically ensures
that all the features of ECMAScript 5.1 and their subtle interactions
are covered, so that JavaScript engines converge on a language
standard. However, the semantic coverage of the test suite has
not been well-studied, and indeed, some behaviors have escaped
untested [5]. Using KJS, we found that despite the large number of
tests, certain semantic behaviors are still not tested. For example,
surprisingly, there is no test for the peculiar fall-though semantics of
the default case for switch (Section 3.3). Writing tests to cover
the untested behaviors, we found bugs in all production JavaScript
engines and in previous semantics.

How can we measure the semantic coverage of a conformance
test suite? One possibility is to run it through several JavaScript
implementations using code coverage tools, and project the result
back to ECMAScript 5.1. However, this is impractical, as it is not
viable to match optimized implementation code to corresponding
ECMAScript 5.1 pseudo-code and filter out implementation-specific
code [6].

Due to its one-to-one correspondence with ECMAScript 5.1,
KJS provides a direct semantic coverage measure for a test suite.
This way we found that there are exactly 17 semantic rules in
the core semantics which are not covered by the test suite, each
corresponding to the language standard as shown in Table 2. We
succeeded to manually write test programs that hit 11 out of 17
behaviors, thus improving the overall quality of the conformance test
suite. It took two days to manually write (or show infeasibility of) the
tests for the 17 cases. Finding tests for the semantics is essentially the
same as finding tests for conventional programs. For each uncovered
semantic rule, we examine a kind of a path condition that leads to

7 It is also possible to check confluence of unspecified behaviors (i.e.,
ensuring that unspecified behaviors are irrelevant) using the ‘search’-mode
execution, but developing such a sophisticated portability checker is an
orthogonal problem, which we leave as future work.

function mkSend(rawSend) {
var whiteList = { "http://www.trust.com": true,

"http://www.good.com" : true };
function newSend(target, msg) {

if (whiteList[target]) rawSend(target,msg);
else console.error("Rejected."); }

return newSend; }

var send = mkSend(function (target, msg) {
console.info("Sent " + msg + " to " + target);});

Figure 8. Secure Message Sending

the rule, and find a solution (i.e., a test program) that satisfies the
path condition. Automatic test case generation techniques may be
used to mechanize this process, but in this paper we have done all
the work manually.

As seen in Table 2, the 11 new tests uncovered bugs in both
production JavaScript engines and in existing semantics. Moreover,
the remaining 6 semantic behaviors are infeasible, that is, they
represent flaws in the language standard itself. These bugs were
reported, confirmed, and fixed [34].8 Below we discuss two out of
the 11 new tests, and one of the 6 infeasible behaviors.

Step 5.e.iv of Section 10.5 in the language standard describes
how to handle duplicate global function declarations and is not
covered by the test suite. The following program

Object.defineProperty(this, "f", {
"value" : 0, "enumerable" : false,
"writable" : false, "configurable" : false });

eval(" function f() { return 0; } "); // TypeError

is supposed to raise a TypeError exception according to the
standard, since the function f is declared while there already exists
another f whose writable, enumerable, and configurable
attributes are all false. Safari WebKit wrongly ignores the duplicate
function declaration, disobeying the standard; Chrome V8 and
Firefox SpiderMonkey behave correctly.

Step 4 of Section 10.2.1.1.3 in the standard describes a case of
updating an immutable variable which is not covered by the test
suite either. In the following program

"use strict";
var f = function g() { g = 0; /*TypeError*/ }; f();

g is immutable, but the body attempts to update it. According to
the standard, a TypeError exception must be raised. However, only
Firefox SpiderMonkey conforms, while Chrome V89 and Safari
WebKit do not, wrongly ignoring the update statement.

For an example of infeasible semantic behavior, consider Section
10.2.1.1.4 GetBindingValue(N,S) in the standard which describes
the environment lookup semantics for a given variable N, and its
Step 3.a which discusses the case where N has an uninitialized
immutable binding. However, this case is infeasible. There are
only two situations where immutable bindings can occur, namely
in the arguments object in a strict mode function and in the
name of a recursive function expression10 in its function body’s
environment. But according to the standard, in both cases the
bindings are initialized right after creation, thus there is no way
to have uninitialized immutable bindings.

We also ran the additional 11 tests on the existing semantics, and
discovered a number of bugs, as shown in Table 2.

8 It turned out that two of them had already been reported [1, 33].
9 Fixed in Chrome 41.0 (V8 4.1.0).
10 Function ‘expression’ and not ‘declaration’, because in the latter the
function name is declared in a global environment and is mutable.

KJS: A Complete Formal Semantics of JavaScript 7 2015/4/28

Page # Section # - Step # KJS Po Bo CR FF SF
p35 8.7.1 GetValue (V) - [[Get]], Step 6 # × ⊗ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.a # # ⊗ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 2.b # ⊗ ⊗ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.a - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 4.b - - - - - -
p36 8.7.2 PutValue (V, W) - [[Put]], Step 6.a & 6.b # # ⊗ # # #
p36 8.7.2 PutValue (V, W) - [[Put]], Step 7.a # × # # × #
p40 8.12.4 [[CanPut]] (P) - Step 8.a # ⊗ ⊗ # # #
p53 10.2.1.1.3 SetMutableBinding (N,V,S) - Step 4 # × # × # ×
p53 10.2.1.1.4 GetBindingValue(N,S) - Step 3.a - - - - - -
p53 10.2.1.1.5 DeleteBinding (N) - Step 2 - - - - - -
p54 10.2.1.1.5 DeleteBinding (N) - Step 4 & 5 # ⊗ # # # #
p55 10.2.1.2.4 GetBindingValue(N,S) - Step 4.a - - - - - -
p59 10.5 Declaration Binding Instantiation - Step 5.e.iii.1 # # # # # #
p59 10.5 Declaration Binding Instantiation - Step 5.e.iv, 1st condition is true # ⊗ ⊗ # # ×
p59 10.5 Declaration Binding Instantiation - Step 5.e.iv, 2nd condition is true # ⊗ ⊗ # # ×
p62 10.6 Arguments Object - [[DefineOwnProperty]], Step 4.a, else-branch - - - - - -

#: Passed ×: Failed ⊗: Not applicable (failed due to unsupported semantics) -: Infeasible semantic behaviors
Po: Politz et al. [37] Bo: Bodin et al. [3] CR: Chrome 38.0 (V8 3.28.71) FF: Firefox 32.0 (SpiderMonkey 32) SF: Safari 7.0.4 (WebKit 537.76.4)

Table 2. Behaviors not covered by the ECMAScript 5.1 conformance test suite. Manually written tests exercising these uncovered behaviors
revealed bugs in production JavaScript engines and in previous JavaScript semantics.

5.3 Symbolic Execution
Here and in Section 5.4 we illustrate how to derive JavaScript
program reasoning tools from generic tools offered by the employed
semantic framework. K allows for terms it reduces to be symbolic,
that is, to contain mathematical variables and constraints on them.
As semantic rules are applied, constraints are accumulated and
solved using Z3 [9] (which is incorporated in K). In this section
we show how this capability can be used to find a known security
vulnerability, and in the next section how it can be lifted into a
fully-fledged JavaScript program verifier.

Consider the program in Figure 8, introduced by Fournet et al.
[17], which contains a secure message sending function. The send
method sends messages only to addresses in the white list. For
example, the following should be rejected:

send("http://www.evil.com","msg"); // Rejected

Suspecting a global object poisoning attack [42], we construct
a configuration adding a symbolic property P with symbolic
value V in the Object.prototype object, equivalent to executing
Object.prototype[P] =V . Then we execute the send request
above using K’s search mode, looking for a state where the message
was sent. The symbolic search execution then returns the constraint

P = "http://www.evil.com" ∧ (V = true ∨
V is a non-empty string ∨ V is a non-zero number ∨ V is an object)

modeling the instances of the suspected attack model; e.g.,

Object.prototype["http://www.evil.com"] = true;

executed before the malicious send call above allows the message to
be sent to the malicious address. That is because Object.prototype
is inherited by all objects, so the if-condition whiteList["http:
//www.evil.com"] returns true even if the whiteList does not
include the evil address. This problem can be fixed by creating an
isolated object for whiteList using Object.create(null):

var whiteList = Object.create(null);
whiteList["http://www.trust.com"] = true;
whiteList["http://www.good.com"] = true;

Function Size (LOC) Time (s)
List reverse 13 8
List append 12 13
BST find 12 7
BST insert 23 12
BST delete 34 17
AVL find 11 7
AVL insert 87 109
AVL delete 106 174

Table 3. Verification Result

5.4 Program Verification
K offers support for program verification based on rule-based
semantics, at no additional cost (with no need to define another
semantics) [40]. Program properties are specified as reachability
rules. K uses a sound and relatively complete proof system for
deriving such rules from the operational semantics rules, which
amounts to:

1. Performing symbolic execution of code without repetitive be-
havior using the semantics rules; and

2. Reasoning about repetitive constructs (loops, recursion).

Like in Hoare logic, all the repetitive constructs need to be annotated
with specifications. The verification is automatic: the user only pro-
vides the specifications. The specifications are given as reachability
rules between symbolic configurations with constraints. We keep
the rules compact by:

1. Using the K notations and conventions (as described in Sec-
tion 2.2) to describe the symbolic configurations; and

2. Computing the static part of the symbolic configurations (e.g.
the builtin-in objects) using the semantics.

For all practical purposes, the standard pre-/post-conditions can be
automatically desugared into reachability rules, although we have
not implemented it yet.

To test the viability of using the generic reachability verifica-
tion infrastructure with the JavaScript semantics, we verified a few

KJS: A Complete Formal Semantics of JavaScript 8 2015/4/28

function insert(v, t) {
if (t === null) return make_node(v);
if (v < t.value) t.left = insert(v, t.left);
else if (v > t.value) t.right = insert(v, t.right);
else return t;
update_height(t); return balance(t); }

function balance(t) {
if (height(t.left) - height(t.right) > 1) {

if (height(t.left.left) < height(t.left.right))
t.left = left_rotate(t.left);

t = right_rotate(t); }
else if (height(t.left) - height(t.right) < -1) {

if (height(t.right.left) > height(t.right.right))
t.right = right_rotate(t.right);

t = left_rotate(t); }
return t; }

function left_rotate(x) {
var y = x.right; x.right = y.left; y.left = x;
update_height(x); update_height(y); return y; }

function right_rotate(x) { ... }

Figure 9. AVL Tree Insertion

JavaScript programs implementing data-structures operations. Ta-
ble 3 summarizes our experiments. For each function we verified
the full functional correctness. Due to space limitations, we dis-
cuss only the AVL insert function (the code is shown in Figure 9).
The specification of AVL insert in a form of a pre-/post-condition
that would desugar into our current reachability rule (shown in the
supplementary material [35]) is:

function insert(v, t)
//@requires tree(t)(T) /\ avl(T)

/\ tree_height(T) < INT_MAX
//@ensures tree(t)(T’) /\ avl(T’)

/\ tree_keys(T’) == { v } U tree_keys(T)
/\ | tree_height(T’) - tree_height(T) | <= 1

The precondition requires that the function is passed an AVL tree
t, and that the height h of t is small enough such that both h and
h+ 1 can be represented on a float-point number without precision
loss. The postcondition ensures that the function returns an AVL
tree t′, that the keys of t′ are the keys of t plus the inserted key,
and that the height h′ of t′ is either h or h + 1. The bound on h
is specific to JavaScript, because JavaScript only provides floating-
point arithmetic. The AVL, keys, and height abstractions are defined
recursively in a standard way.

The overall verification times in Table 3 are quite acceptable,
considering that our program verifier is obtained for free from KJS
and that, at the best of our knowledge, there is no other program
verifier for JavaScript that can verify such complex programs to
compare with ours. Also, our times are only twice slower on
average than those in [40] for similar properties but for a toy C-
like language. The times for AVL insert and delete are large due to
the fact that the helper functions (balance, left_rotate) are not
given specifications, instead they are called using their operational
semantics, which leads to a larger number of paths to analyze. The
effort to verify these examples took approximately one man-week.
Most of the work went into finding the JavaScript specific part of
the specifications (like the bound on the height in the AVL example).
We believe that our preliminary evaluation shows a realistic potential
of using the KJS semantics for JavaScript program verification.

6. Related Work
There is a large body of literature on real language semantics. Due to
space, we only discuss efforts that directly influenced us: JavaScript
semantics and other large semantics in K.

6.1 Other JavaScript Semantics
We only consider JavaScript semantics attempting to define the full
language, not a subset, i.e., ones which like ours aim at establishing
a solid foundation for formal JavaScript tools.

Herman and Flanagan (2007) [25] gave an executable semantics
of ECMAScript 4. As language standard committee members (Ecma
TC39-ECMAScript), their objective was to specify a definitional in-
terpreter of the language. They used ML as a specification language,
since it is executable, more precise than English prose, and more
easily understandable than mathematical notation. They separately
defined the standard libraries in JavaScript itself, which is also what
we did. Their semantics, however, is based on ECMAScript 4 which
was abandoned, never approved as a standard. Furthermore, unlike
ours, their semantics does not facilitate formal reasoning.

Maffeis et al. (2008) [29] defined a small-step semantics of EC-
MAScript 3 and proved some basic properties. Their semantics is
based on the older ECMAScript 3, and does not cover the modern
JavaScript features such as the strict mode. Also, it is not executable,
and cannot be validated against conformance test suites.

Guha et al. (2010) [23] and Politz et al. (2012) [37] presented a
reduced semantics of JavaScript, based on ECMAScript 3 and 5,
respectively. They defined a core language, λJS, and a translation
from JavaScript to λJS together with a (runtime) environment
containing internal semantic functions written in λJS itself. They
also implemented an interpreter for λJS, which, combined with
the translator and the runtime environment, allows to execute and
test their semantics. Although the reduced semantics is helpful to
understand the essentials of JavaScript, there is a gap between it
and the actual language specification. Since their semantics does
not directly follow the structure of the language specification, it is
difficult to manually/visually inspect it and, indeed, it contains a
number of bugs (see Table 2). We found that the JavaScript language
specification, unlike for other languages, is quite well written, so we
decided to follow it faithfully.

Bodin et al. (2014) [3] defined a JavaScript semantics in Coq,
which, like KJS, follows ECMAScript 5.1. To execute and thus test
it, they also implemented an interpreter, manually. Moreover, in
order to link it to their semantics, they had to prove their interpreter
correct. This step was inevitable, because their Coq specification is
not executable—Coq can only extract executables from functions
or proofs, not from specifications defined as inductive relations—
yet testing is paramount when it gets to large semantics. Defining
an interpreter and proving it correct for a complex language like
JavaScript is a huge effort;11 while a laudable and impressive feat
in itself, we believe that such heavy approaches may demotivate
language designers, for example the standards committee, to adopt
a formal semantics. Compare that with KJS, where an interpreter is
obtained directly from the semantics at no additional effort, together
with other language analysis tools. Moreover, their semantics is
incomplete. They omitted several language components such as
the for-in loop and array manipulations. Table 1 shows that their
semantics passes only about 65% of the conformance test suite.

On non-determinism To our knowledge, KJS is the only JavaScript
semantics that captures the non-determinism of the language. For

11 Indeed, Bodin et al. [3] involved 8 people, including domain experts of
JavaScript and of Coq, for a year.

KJS: A Complete Formal Semantics of JavaScript 9 2015/4/28

example, for the for-in’s iteration order, the standard says that
the mechanics and order of enumerating the properties is left to the
implementation; so from a semantic perspective, any order is possi-
ble. Without properly capturing the non-determinism of JavaScript,
a semantics of it cannot execute and at the same time formally
analyze JavaScript programs (e.g., show that the enumeration order
is irrelevant in a given program). For example, Bodin et al. [3] chose
to not provide a semantics for the for-in construct at all, Maffeis et
al. [29] to define a partial semantics (with a hole for the enumeration
order), and Guha et al. [23] and Politz et al. [37] to only consider a
fixed, arbitrary order (given by Haskell’s Hash Tables or OCaml’s
Map iteration order, respectively).

Verification of JavaScript programs While there is much work
on finding bugs and security violations in JavaScript programs,
verification of functional correctness of JavaScript programs is less
developed. Gardner et al. [18] propose a (Hoare logic semantics with
state properties specified using) separation logic for a JavaScript
fragment. They follow the standard approach by defining an opera-
tional semantics as a model of the language, and then proving the
separation logic sound w.r.t. the operational semantics. Like [3],
this has the disadvantage of having to define different semantics of
the same language for different purposes, together with soundness
proofs, all huge efforts that require maintenance as the language
evolves. Compare that to KJS, where only the operational semantics
is required, and a deductive program verifier is automatically de-
rived at no additional effort. Furthermore, their separation logic only
supports manual reasoning and the programs they verified are sig-
nificantly simpler than the programs in Table 3 which were verified
automatically by KJS. Nordio et al. [32] present a program verifier
for a JavaScript fragment. Their tool is implemented by translation
to Boogie, and thus lacks a formal basis. Moreover, they can only
verify simple properties that can be directly translated in Boogie.

Semantics for static analysis Other efforts to formally specify
JavaScript semantics for the purpose of static analysis have been
made. Lee et al. [28] provides a reduced semantics (i.e., defining an
intermediate language into which the original language is translated),
based on ECMAScript 5. Like Guha et al. [23] and Politz et al. [37],
they do not directly follow the actual language specification, making
manual/visual inspection hard. Kashyap et al. [27] also provides a
reduced semantics for the purpose of abstract interpretation. Their
semantics, however, is based on ECMAScript 3, and omitted the
semantics of eval.

6.2 Other Large Language Semantics in K
There are four major large language semantics defined in K so far,
which served as a great source of inspiration for our JavaScript
semantics: C [15], PHP [16], Python [24], and Java [4]. All these
semantics are executable and they have been validated by a large
volume of tests, and demonstrated useful through formal analysis
tools produced by the K framework, same like our KJS.

Ellison and Rosu [15] defined a formal semantics of C11, which
was extensively tested against the GCC torture test suite passing
99.2% of the tests, which is more than GCC and Clang passed.
The C semantics was also evaluated by debugging, monitoring, and
(LTL) model checking of example programs using corresponding
tools provided by the K framework. A main application of their C
semantics is undefinedness checking, e.g., in the context of compiler
testing, for automatic test-case reduction [38].

Filaretti and Maffeis [16] defined a formal semantics of PHP.
Since, unlike for JavaScript, C and Java, there is no official language
standard for PHP, they had to heavily rely on testing against the
reference implementation. They evaluated their semantics by model
checking certain properties of a web database management tool,
phpMyAdmin, and a cryptographic key generation library, pbkdf2.

Bogdanas and Rosu [4] gave a formal semantics of Java 1.4.
To mitigate Java’s complexity, they split their semantics into two
phases: (1) the static semantics enriches the original program by
annotating statically inferred information (e.g., types), and (2) the
dynamic semantics gives the executable semantics. They evaluated
the semantics by model checking multi-threaded programs.

Guth [24] defined a formal semantics of Python 3.3, providing se-
mantics not only for the language constructs but also for the garbage
collection mechanism. Being executable, it has been thoroughly
tested against more than 600 hand-crafted tests. Like KJS, their
semantics covers the core language but only essential parts of the
standard libraries.

The most distinguished aspect of our semantics, compared to
other language semantics described in K, is the resemblance to the
language standard (Figure 2); this facilitates visual inspection and
allows us to measure the semantic coverage of a test suite. We did it
by defining JavaScript on top of a semantics description language
(Section 3.2), which was possible thanks to the JavaScript language
standard being algorithmically described (unlike the language stan-
dards of other languages defined in K).

7. Discussion and Future Work
Although KJS passes all the tests in the ECMAScript 5.1 confor-
mance test suite for the core language, which is the reason why we
call it a ‘complete semantics’, there is no guarantee that our seman-
tics is necessarily correct. In the absence of a reference semantics,
we believe that the best we can do to validate our semantics at this
stage is to test it heavily against as many tests as possible, which we
did, and to reason with it and prove certain expected properties of
it, which we have not done yet but we plan to do as soon as a Coq
backend becomes available for K. In particular, a formal relation-
ship between our semantics and that by Bodin et al. [3] can also be
shown then using Coq.

The upcoming ECMAScript 6 [12] is now being actively devel-
oped and will be released soon. A natural question is whether a
new version of the KJS semantics can be derived automatically or
semi-automatically from the standard. Since our semantics is already
systematically, but manually translated from the language standard,
an automatic or semi-automatic translator may not be totally unfea-
sible. Recently, Ghosh et al. [19] studied automatic extraction of
requirements specifications from natural language documents, show-
ing that natural language processing (NLP) is now mature enough
to be used in this context.

One of the most promising directions of future work is to use KJS
to formally verify JavaScript programs against security properties
of popular JavaScript applications.

Acknowledgments
We thank to K development team for many insightful discussions
that helped develop the ideas in this paper, and to the anonymous
reviewers for their helpful comments and suggestions. The work
presented in this paper was supported in part by the Boeing grant
on “Formal Analysis Tools for Cyber Security” 2014-2015, the NSF
grants CCF-1218605, CCF-1318191 and CCF-1421575, and the
DARPA grant under agreement number FA8750-12-C-0284.

References
[1] E. Arvidsson. V8 Issue 2243. https://code.google.com/p/v8/

issues/detail?id=2243, 2012. Accessed: April 28, 2015.

[2] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett. VEX:
Vetting Browser Extensions for Security Vulnerabilities. In USENIX
Security, pages 22–22. USENIX, 2010.

KJS: A Complete Formal Semantics of JavaScript 10 2015/4/28

https://code.google.com/p/v8/issues/detail?id=2243
https://code.google.com/p/v8/issues/detail?id=2243

[3] M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis,
D. Naudziuniene, A. Schmitt, and G. Smith. A Trusted Mechanised
JavaScript Specification. In POPL, pages 87–100. ACM, 2014.

[4] D. Bogdanas and G. Rosu. K-Java: A Complete Semantics of Java. In
POPL, pages 445–456. ACM, 2015.

[5] D. Bruant. ECMAScript Bug 56. https://bugs.ecmascript.org/
show_bug.cgi?id=56#c3, 2011. Accessed: April 28, 2015.

[6] D. Bruant. Mozilla Bug 641214. https://bugzilla.mozilla.
org/show_bug.cgi?id=641214, 2011. Accessed: April 28, 2015.

[7] M. Chevalier-Boisvert, E. Lavoie, M. Feeley, and B. Dufour. Boot-
strapping a Self-hosted Research Virtual Machine for JavaScript: An
Experience Report. In Proceedings of the 7th Symposium on Dynamic
Languages, pages 61–72. ACM, 2011.

[8] D. Crockford. JavaScript: The Good Parts. O’Reilly Media, 2008.
[9] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS,

volume 4963, pages 337–340. LNCS, 2008.
[10] Ecma TC39. ECMAScript Harmony. https://mail.mozilla.org/

pipermail/es-discuss/2008-August/003400.html, 2008. Ac-
cessed: April 28, 2015.

[11] Ecma TC39. Standard ECMA-262 ECMAScript Language Specifica-
tion Edition 5.1, June 2011.

[12] Ecma TC39. Draft Specification of ECMA-262 6th Edi-
tion. http://wiki.ecmascript.org/doku.php?id=harmony:
specification_drafts, 2014. Accessed: April 28, 2015.

[13] Ecma TC39. TC39 Meeting Minutes. https://github.com/
rwaldron/tc39-notes/blob/master/es6/2014-09/sept-23.
md#somehow-we-started-talking-about-test262, 2014.
Accessed: April 28, 2015.

[14] Ecma TC39. Test262: ECMAScript Language Conformance Test
Suite. http://test262.ecmascript.org, 2014. Accessed: April
28, 2015.

[15] C. Ellison and G. Rosu. An Executable Formal Semantics of C with
Applications. In POPL, pages 533–544. ACM, 2012.

[16] D. Filaretti and S. Maffeis. An Executable Formal Semantics of PHP.
In ECOOP, volume 8586, pages 567–592. LNCS, 2014.

[17] C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and
B. Livshits. Fully Abstract Compilation to JavaScript. In POPL,
pages 371–384. ACM, 2013.

[18] P. A. Gardner, S. Maffeis, and G. D. Smith. Towards a Program Logic
for JavaScript. In POPL, pages 31–44. ACM, 2012.

[19] S. Ghosh, D. Elenius, W. Li, P. Lincoln, N. Shankar, and W. Steiner.
Automatically Extracting Requirements Specifications from Natural
Language. CoRR, abs/1403.3142, 2014.

[20] S. Guarnieri and B. Livshits. GATEKEEPER: Mostly Static Enforce-
ment of Security and Reliability Policies for Javascript Code. In
USENIX Security, pages 151–168. USENIX, 2009.

[21] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and R. Berg.
Saving the World Wide Web from Vulnerable JavaScript. In ISSTA,
pages 177–187. ACM, 2011.

[22] A. Guha, S. Krishnamurthi, and T. Jim. Using Static Analysis for Ajax
Intrusion Detection. In WWW, pages 561–570. ACM, 2009.

[23] A. Guha, C. Saftoiu, and S. Krishnamurthi. The Essence of Javascript.
In ECOOP, volume 6183, pages 126–150. LNCS, 2010.

[24] D. Guth. A Formal Semantics of Python 3.3. Master’s thesis, University
of Illinois at Urbana-Champaign, July 2013.

[25] D. Herman and C. Flanagan. Status Report: Specifying Javascript with
ML. In Proceedings of the 2007 Workshop on Workshop on ML, pages
47–52. ACM, 2007.

[26] D. Herman, L. Wagner, and A. Zakai. asm.js. http://asmjs.org,
2014. Accessed: April 28, 2015.

[27] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sar-
racino, B. Wiedermann, and B. Hardekopf. JSAI: A Static Analysis
Platform for JavaScript. In FSE, pages 121–132. ACM, 2014.

[28] H. Lee, S. Won, J. Jin, J. Cho, and S. Ryu. SAFE: Formal Speci-
fication and Implementation of a Scalable Analysis Framework for
ECMAScript. In Proceedings of the 2012 International Workshop on
Foundations of Object-Oriented Languages. ACM, 2012.

[29] S. Maffeis, J. C. Mitchell, and A. Taly. An Operational Semantics for
JavaScript. In APLAS, volume 5356, pages 307–325. LNCS, 2008.

[30] Mean.io. MEAN: A Fullstack Javascript Framework. http://mean.
io/, 2014. Accessed: April 28, 2015.

[31] J. Meseguer. Conditional Rewriting Logic as a Unified Model of
Concurrency. Theoretical Computer Science, 96(1):73–155, 1992.

[32] M. Nordio, C. Calcagno, and C. A. Furia. Javanni: A Verifier for
JavaScript. In Fundamental Approaches to Software Engineering,
volume 7793, pages 231–234. LNCS, 2013.

[33] J. Orendorff. Mozilla Bug 779682. https://bugzilla.mozilla.
org/show_bug.cgi?id=779682, 2012. Accessed: April 28, 2015.

[34] D. Park. WebKit Bug 138859, 138858; V8 Issue 3704;
ECMA-262 Bug 3427, 3426; S5 Issues 55, 57, 59.
https://bugs.webkit.org/show_bug.cgi?id=138859,
https://bugs.webkit.org/show_bug.cgi?id=138858,
https://code.google.com/p/v8/issues/detail?id=3704,
https://bugs.ecmascript.org/show_bug.cgi?id=3427,
https://bugs.ecmascript.org/show_bug.cgi?id=3426,
https://github.com/brownplt/LambdaS5/issues/55,
https://github.com/brownplt/LambdaS5/issues/57,
https://github.com/brownplt/LambdaS5/issues/59, 2014.
Accessed: April 28, 2015.

[35] D. Park and A. Stefanescu. Supplementary material. https://
github.com/kframework/javascript-semantics, 2014. Ac-
cessed: April 28, 2015.

[36] J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi. ADsafety:
Type-based Verification of JavaScript Sandboxing. In USENIX Security,
pages 12–12. USENIX, 2011.

[37] J. G. Politz, M. J. Carroll, B. S. Lerner, J. Pombrio, and S. Krishna-
murthi. A Tested Semantics for Getters, Setters, and Eval in JavaScript.
In Proceedings of the 8th Symposium on Dynamic Languages, pages
1–16. ACM, 2012.

[38] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-case
Reduction for C Compiler Bugs. In PLDI, pages 335–346. ACM, 2012.

[39] G. Rosu and T. F. Serbanuta. An Overview of the K Semantic
Framework. Journal of Logic and Algebraic Programming, 79(6):
397–434, 2010.

[40] G. Rosu and A. Stefanescu. Checking Reachability Using Matching
Logic. In OOPSLA, pages 555–574. ACM, 2012.

[41] M. Samuel. Properties of Interpreters or the Browser Environment
that allow Privilege Escalation. https://code.google.com/p/
google-caja/wiki/AttackVectors, 2009. Accessed: April 28,
2015.

[42] M. Samuel. Attack Vectors: Global Object Poisoning. https://code.
google.com/p/google-caja/wiki/GlobalObjectPoisoning,
2009. Accessed: April 28, 2015.

[43] T. F. Serbanuta, A. Arusoaie, D. Lazar, C. Ellison, D. Lucanu, and
G. Rosu. The K Primer (version 3.3). In Proceedings of the Second
International Workshop on the K Framework and its Applications,
volume 304, pages 57–80. ENTCS, 2013.

[44] G. Smith. ECMA-262 Bug 1444. https://bugs.ecmascript.org/
show_bug.cgi?id=1444, 2013. Accessed: April 28, 2015.

[45] A. Taly, U. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra.
Automated Analysis of Security-Critical JavaScript APIs. In S&P
(Oakland), pages 363–378. IEEE, 2011.

[46] A. Zakai. Emscripten: An LLVM-to-JavaScript Compiler. In SPLASH,
pages 301–312. ACM, 2011.

KJS: A Complete Formal Semantics of JavaScript 11 2015/4/28

https://bugs.ecmascript.org/show_bug.cgi?id=56#c3
https://bugs.ecmascript.org/show_bug.cgi?id=56#c3
https://bugzilla.mozilla.org/show_bug.cgi?id=641214
https://bugzilla.mozilla.org/show_bug.cgi?id=641214
https://mail.mozilla.org/pipermail/es-discuss/2008-August/003400.html
https://mail.mozilla.org/pipermail/es-discuss/2008-August/003400.html
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
https://github.com/rwaldron/tc39-notes/blob/master/es6/2014-09/sept-23.md#somehow-we-started-talking-about-test262
https://github.com/rwaldron/tc39-notes/blob/master/es6/2014-09/sept-23.md#somehow-we-started-talking-about-test262
https://github.com/rwaldron/tc39-notes/blob/master/es6/2014-09/sept-23.md#somehow-we-started-talking-about-test262
http://test262.ecmascript.org
http://asmjs.org
http://mean.io/
http://mean.io/
https://bugzilla.mozilla.org/show_bug.cgi?id=779682
https://bugzilla.mozilla.org/show_bug.cgi?id=779682
https://bugs.webkit.org/show_bug.cgi?id=138859
https://bugs.webkit.org/show_bug.cgi?id=138858
https://code.google.com/p/v8/issues/detail?id=3704
https://bugs.ecmascript.org/show_bug.cgi?id=3427
https://bugs.ecmascript.org/show_bug.cgi?id=3426
https://github.com/brownplt/LambdaS5/issues/55
https://github.com/brownplt/LambdaS5/issues/57
https://github.com/brownplt/LambdaS5/issues/59
https://github.com/kframework/javascript-semantics
https://github.com/kframework/javascript-semantics
https://code.google.com/p/google-caja/wiki/AttackVectors
https://code.google.com/p/google-caja/wiki/AttackVectors
https://code.google.com/p/google-caja/wiki/GlobalObjectPoisoning
https://code.google.com/p/google-caja/wiki/GlobalObjectPoisoning
https://bugs.ecmascript.org/show_bug.cgi?id=1444
https://bugs.ecmascript.org/show_bug.cgi?id=1444

	Introduction
	Why Yet Another JavaScript Semantics?
	Challenges in Formalizing JavaScript
	Contribution and Approach
	Outline

	Preliminaries
	ECMAScript 5.1
	The K Framework

	KJS: Formal Semantics of JavaScript in K
	Program Configuration
	Semantics Description Language
	Semantics of Language Constructs
	Standard Libraries

	Evaluation
	Completeness
	Development Cost

	Applications
	Checking Portability
	Finding Bugs and Improving the Test Suite
	Symbolic Execution
	Program Verification

	Related Work
	Other JavaScript Semantics
	Other Large Language Semantics in K

	Discussion and Future Work

