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Abstract

Matching logic reachability is an emerging verification approach which uses a language-independent proof system
to prove program properties based on the operational semantics. In this paper we apply this approach in the context of
a low-level real-time language with interrupts, in which each instruction takes a specified time to execute. In particular,
we verify that if the interrupts are scheduled with large enough intervals, the program execution terminates yielding the
correct result. Surprisingly, it turns out that matching logic reachability can handle the low-level and real-time features
of the language just by using their operational semantics, and that language specific reasoning is unnecessary.

1 Matching Logic Reachability
In this section we give background on matching logic reachability [6–10]. The matching logic reachability approach
to program verification is to directly use the operation semantics of the target language, together with an appropriate
language-independent proof system, in order to prove that a program meets its specifications. Both the operational
semantics and the program specifications are given as reachability rules. No axiomatic (or Hoare), dynamic, or other
auxiliary semantics of the same language is needed for verification purposes, the language-independent proof system
offers all the good properties of these formalisms, including small size and compositionality of proof derivations.

1.1 Matching Logic
Here we briefly recall matching logic [10], which is a logic designed for specifying and reasoning about arbitrary
program and system configurations. A matching logic formula, called a pattern, is a first-order logic (FOL) formula
with special predicates, called basic patterns. A basic pattern is a configuration term with variables. Intuitively, a
pattern specifies both structure (via basic patterns) and logical constraints: a configuration satisfies the pattern iff it
matches the structure and satisfies the constraints.

Matching logic is parametric in a signature and a model of configurations, making it a prime candidate for expressing
program state properties in a language-independent verification framework. The configuration signature can be as
simple as a pair 〈code, σ〉 with code a program fragment and σ a “state” mapping program variables into integers,
in the case when one wants to reason about simple imperative languages. It can also be as complex as that of the C
language [3], which contains more than 70 semantic components.

We use basic concepts of multi-sorted first-order logic. Given a signature Σ specifying the sorts and arities of the
function symbols (constructors or operators) used in configurations, let TΣ(Var) denote the free Σ-algebra of terms
with variables in Var. TΣ,s(Var) is the set of Σ-terms of sort s. A valuation ρ : Var→T with T a Σ-algebra extends
uniquely to a (homonymous) Σ-algebra morphism ρ :TΣ(Var)→T . Many mathematical structures needed for language
semantics have been defined as Σ-algebras, including: boolean algebras, natural/integer/rational numbers, lists, sets,
bags (or multisets), maps (e.g., for states, heaps), trees, queues, stacks, etc.

Let us fix the following: (1) an algebraic signature Σ, associated to some desired configuration syntax, with a
distinguished sort Cfg, (2) a sort-wise infinite set of variables Var, and (3) a Σ-algebra T , the configuration model,
which may but need not be a term algebra. As usual, TCfg denotes the elements of T of sort Cfg, called configurations.
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Definition 1. [10] A matching logic formula, or a pattern, is a first-order logic (FOL) formula which allows terms
in TΣ,Cfg(Var), called basic patterns, as predicates. We define satisfaction (γ, ρ) |= ϕ over configurations γ ∈ TCfg,
valuations ρ : Var→ T and patterns ϕ as follows (among the FOL constructs, we only show ∃):

(γ, ρ) |= ∃X ϕ iff (γ, ρ′) |= ϕ for some ρ′ :Var→T with ρ′(y) = ρ(y) for all y ∈ Var\X

(γ, ρ) |= π iff γ = ρ(π) where π ∈ TΣ,Cfg(Var)

We write |= ϕ when (γ, ρ) |= ϕ for all γ ∈ TCfg and all ρ : Var→ T .

A basic pattern π is satisfied by all the configurations γ that match it; the ρ in (γ, ρ) |= π can be thought of
as the “witness” of the matching, and can be further constrained in a pattern. For example, if SUM is the code
“s:=0; while(n>0)(s:=s+n; n:=n-1)” in a simple imperative language with configurations 〈code, σ〉, then the
pattern ∃s (〈 SUM, (s 7→ s, n 7→n) 〉 ∧ n ≥Int 0) matches the configurations with code SUM and state binding program
variables s and n to integer s and non-negative integer n. Note that we use typewriter for program variables in PVar
and italic for mathematical variables in Var.

Not all patterns are equally meaningful. For example, the pattern true is matched by all configurations, the pattern
false is matched by no configurations, and some patterns are satisfiable only under some valuations ρ. For our subsequent
results, we are interested in the following class of patterns:

Definition 2. [8] A pattern ϕ is weakly well-defined iff for any valuation ρ : Var → T some configuration γ ∈ TCfg

validates (γ, ρ) |= ϕ.

For example, all basic patterns π are weakly well-defined.

1.2 Conditional Reachability Rules
Unconditional reachability rules were introduced in [8], which shows that they can express particular operational
semantics that do not require rule premises, such as evaluation contexts [11] and K [5]. They were studied further in [7],
which shows that they can express the Hoare triples of axiomatic semantics. Finally, conditional reachability rules were
introduced as a generalization of unconditional rules in [9], which shows that they capture conventional operational
semantics with rule premises, such as big-step [1] and small-step [4].

Definition 3. [9] A conditional reachability rule is a sentence

ϕ⇒ ϕ′ if ϕ1⇒ ϕ′1
∧
. . .
∧
ϕn⇒ ϕ′n

with n ≥ 0 and with ϕ, ϕ′, ϕ1, ϕ′1, ..., ϕn, ϕ′n matching logic patterns. We call ϕ the left-hand side (LHS) and ϕ′ the
right-hand side (RHS). A rule is unconditional when n = 0. A reachability system is a set of reachability rules.

As discussed at length in [8, 9], we assume that operational semantics are defined with rewrite rules of the form

cfg⇒ cfg′ if b
∧

cfg1⇒ cfg′1
∧

b1
∧
. . .
∧

cfgn⇒ cfg′n
∧

bn

which can now be seen as syntactic sugar for reachability rules

cfg ∧ b ∧ b1 ∧ . . . ∧ bn⇒ cfg′ if cfg1⇒ cfg′1
∧
. . .
∧

cfgn⇒ cfg′n

Here the Boolean side conditions have been all conjuncted with the LHS pattern. Recall from Definition 1 that matching
logic includes configuration terms as patterns and allows the use of FOL constructs, like conjunction, to build new
patterns, so the above is a correct reachability rule, where ϕ is cfg∧b∧b1∧ . . .∧bn. In the particular case of operational
semantics with rewrite rules without premises, the associated reachability rules are unconditional.

From here on we assume that a language/calculus/system is defined as a reachability system and, unless otherwise
specified, fix an arbitrary reachability system S. It is irrelevant for the subsequent developments whether such rules
represent a small-step, a big-step, an evaluation contexts, a K or any other particular operational semantics.
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An operational semantics typically describes program behaviors by generating a transition system over program
configurations, which can associate a behavior to any given program in any given state. In some cases, e.g., small-step
semantics, the transition system comprises all the atomic computational steps; in other cases, e.g., big-step semantics,
the transition system consists of a binary relationship mapping configurations holding (fragments of) programs to their
resulting configurations after evaluation. Recall (Definition 1) that matching logic comes equipped with a model of
configurations, T . Then S yields a transition system over the configurations of TCfg.

Definition 4. [9] The transition relation induced by S, �S ⊆ TCfg × TCfg (written infix), is the least fixpoint of the
following condition: γ �S γ′ if there exists a reachability rule

ϕ⇒ ϕ′ if ϕ1⇒ ϕ′1
∧
. . .
∧
ϕn⇒ ϕ′n

in S and some valuation ρ :Var→ T such that:

1. (γ, ρ) |= ϕ and (γ′, ρ) |= ϕ′; and

2. for all γ1, . . . , γn ∈ TCfg with (γi , ρ) |= ϕi for all 1 ≤ i ≤ n there exist γ′1, . . . , γ
′
n with (γ′i , ρ) |= ϕ′i and γi �?

S
γ′i for

all 1≤ i≤n (�?
S

is the transitive/reflexive closure of �S).

Then (TCfg,�S) is the transition system induced by S.

Intuitively, �S is the least relation compatible with all the rules in S, with all rule conditions interpreted as �S-
reachability. The existence of a least fixpoint is guaranteed by the Knaster-Tarski theorem: the set of binary relations
on TCfg with inclusion forms a complete lattice, and the condition is monotonic. If S contains only rewrite rules, that
is, rules whose patterns are all basic, then all the configurations γ, γ′, γ1, γ′1, . . . , γn, γ′n in Definition 4 are uniquely
determined by ρ, since (γ, ρ) |= π iff γ = ρ(π) for any basic pattern π (by Definition 1). In this case, �S becomes the
usual transition relation induced by a (top-most) term rewrite system (S) on a Σ-algebra (T ).

To define rule validity with the sense of partial correctness we need to say which configurations terminate. In some
cases, e.g., small-step semantics, nontermination is captured by the ability to take an infinite sequence of transitions
starting with the given configuration; in other cases, e.g., big-step semantics, nontermination is captured by the ability
to make an infinite sequence of nested attempts to fulfill conditions of rules while trying to take a step—which is not
the same as a stuck configuration which cannot take a step because no rules apply.

The notion of termination of configurations with respect to S given below captures both cases above. This definition
is based on a preorder on configurations, which will be well-founded under terminating configurations. This order is
inspired by quasi-decreasing orders for conditional term rewriting systems. This definition is also somewhat related to
operational termination of conditional term rewrite systems, although the latter is a property of a rewrite system as
whole, while this notion of termination refers to a particular configuration in a particular model.

Definition 5. [9] Let (TCfg,�) be the termination dependence relation defined as follows:

• γ � γ′ if γ �S γ′; and

• γ � γ′ if there is a rule ϕ⇒ ϕ′ if ϕ1⇒ ϕ′1
∧
. . .
∧
ϕn⇒ ϕ′n in S, valuation ρ :Var→ T , and index 1 ≤ i ≤ n so

that:

1. (γ, ρ) |= ϕ

2. (γ′, ρ) |= ϕi

3. For each 1 ≤ j < i, ϕ j⇒ ϕ′j is “strongly ρ-valid”: for any γ j such that (γ j, ρ) |= ϕ j there exists γ′j such that
γ j �?

S
γ′j and (γ′i , ρ) |= ϕ′j

γ ∈ TCfg terminates iff there are no infinite decreasing � chains starting at γ; γ diverges otherwise. We let � denote the
partial order associated to �, i.e., its reflexive and transitive closure.
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This definition of termination above mimics the application of conditional rules in the configuration model, in that
conditions are solved in order and a condition is considered only if all the previous conditions are successfully solved.
Taking into account the order of conditions is essential to get the correct notion of termination. If condition 3 were
dropped, then any while loop could be said to diverge in a big-step semantics by recursing into the condition which
executes the body again, without first checking that the test of the loop actually passes. Termination dependence is
essential for soundness, which justifies circularity by well-founded induction on � under terminating configurations.

Definition 6. [9] A pattern ϕ terminates (resp. diverges), written S |= ϕ↓ (resp. S |= ϕ↑), iff for all γ ∈ TCfg and for
all ρ :Var→ T , if (γ, ρ) |= ϕ then γ terminates (resp. diverges).

In Hoare logic, {pre} code {post} is (semantically) valid, in the sense of partial correctness, iff for any state satisfying
pre, if code terminates then the resulting state satisfies post. This elegant definition has the luxury of relying on another
formal semantics of the target language for the language-specific notions of “state”, “satisfaction”, and “termination”.
Here everything happens in a single language-independent framework, thus validity is generalized as follows:

Definition 7. [9] Given valuation ρ : Var → T , an unconditional reachability rule ϕ ⇒ ϕ′ is ρ-valid, written
S, ρ |= ϕ⇒ ϕ′, iff for any γ ∈ TCfg with (γ, ρ) |= ϕ, if γ terminates then there is a γ′ ∈ TCfg such that (γ′, ρ) |= ϕ′ and
γ �?

S
γ′. Rule ϕ⇒ ϕ′ is valid, written S |= ϕ⇒ ϕ′, iff it is ρ-valid for each ρ :Var→ T .

Intuitively, S |= ϕ⇒ ϕ′ specifies reachability: any terminating configuration matching ϕ transits, on some execution
path, to a configuration matching ϕ′. This notion of validity becomes the usual Hoare logic validity when the reachability
rule ϕ⇒ ϕ′ corresponds to a Hoare triple as (as described later) and S is deterministic. The definition of the assembly
language in Section 2.1 is deterministic. A major difference between our validity and Hoare validity is that the
language-specific “state” and “code” are replaced by the language-independent “configuration”.

Recall that S is an arbitrary reachability system, thought of as a “semantics”. However, not all reachability systems
are meaningful as semantics in all situations. Consider a reachability system containing a rule of the form ϕ⇒ false.
Such a rule is semantically useless (because it generates no transitions), but also makes reachability reasoning unsound,
because there are no transitions in the generated transition system which would validate ϕ⇒ false. The soundness of the
proof system in Figure 1 requires that S |= µ for any unconditional µ ∈ S, which can be ensured by simple conditions
on S as follows:

Definition 8. [9] Rule ϕ⇒ ϕ′ if ϕ1⇒ ϕ′1
∧
. . .
∧
ϕn⇒ ϕ′n is weakly well-defined iff ϕ′, ϕ1, ..., ϕn are weakly well-

defined. S is weakly well-defined iff all its rules are.

Rules of the form ϕ⇒ false are not weakly well-defined. As mention in the beginning of Section 1.2, an operational
semantics rule contains only configuration terms except possibly for its LHS. Since configuration terms are basic
patterns, which are always weakly well-defined, it is safe to say that the reachability systems of interest are expected to
be weakly well-defined.

Reachability rules can specify not only operational semantics, but also program properties. As shown in [7], each
Hoare triple can be translated into a particular reachability rule, although the translation needs to be mechanized
separately for each language. However, it is not recommend to follow this route when specifying program properties,
because Hoare triples can be more complex than reachability rules expressing the same property, even without the
complexity added by the mechanical translation. Consider the following Hoare triple expressing SUM’s property:

{n = oldn ∧ n ≥ 0} SUM {s = oldn * (oldn + 1) / 2 ∧ n = 0}

The introduction of the additional oldn variable follows a common Hoare logic “trick” to save the initial value of n.
This Hoare triple translates mechanically into

∃s, n(〈SUM, (s 7→s, n 7→n)〉 ∧ n = oldn ∧ n ≥Int 0) ⇒
∃s, n(〈skip, (s 7→s, n 7→n)〉 ∧ s=oldn∗Int (oldn+Int 1)/Int2 ∧ n=0)

On the other hand we can express the same property more directly as:

〈SUM, (s 7→ s, n 7→n)〉 ∧ n≥Int 0⇒ 〈skip, (s 7→n∗Int (n+Int 1)/Int2, n 7→0)〉
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Axiom :

ϕ⇒ ϕ′ if ϕ1⇒ ϕ′1
∧
· · ·
∧
ϕn⇒ ϕ′n ∈ A ψ is a structureless pattern

A∪ C ` ϕ1 ∧ ψ⇒ ϕ′1 · · · A ∪ C ` ϕn ∧ ψ⇒ ϕ′n

A `C ϕ ∧ ψ⇒ ϕ′ ∧ ψ

Reflexivity : A ` ϕ⇒ ϕ

Transitivity :
A `C ϕ1⇒ ϕ2 A∪ C ` ϕ2⇒ ϕ3

A `C ϕ1⇒ ϕ3

Consequence :
|= ϕ1 → ϕ′1 A `C ϕ

′
1⇒ ϕ′2 |= ϕ′2 → ϕ2

A `C ϕ1⇒ ϕ2

Case Analysis :
A `C ϕ1⇒ ϕ A `C ϕ2⇒ ϕ

A `C ϕ1 ∨ ϕ2⇒ ϕ

Abstraction :
A `C ϕ⇒ ϕ′ where X ∩ FV(ϕ′) = ∅

A `C ∃X ϕ⇒ ϕ′

Circularity :
A `C∪{ϕ⇒ϕ′} ϕ⇒ ϕ′

A `C ϕ⇒ ϕ′

Figure 1: Proof system for (one-path) reachability using conditional rules.

In words, if we execute the configuration holding the program SUM and a state binding program variables s and
n to integer s and non-negative integer n, then we reach a configuration holding a state that binds s and n to the sum
of numbers up to n and to 0, respectively. Technically, s and n are variables of sort Int; one can also think of them as
“symbolic” integers. On the other hand, s and n are constants of sort PVar.

One could argue that the Hoare triple above is more natural because it is more compact and the specifications make
direct use of program’s variables. However, one should note that the reachability rule is more informative, since it
also states that s and n must be available in the state before SUM is executed. To state these properties using Hoare
logic we need additional specification contents, e.g. definedness predicates. Also, Hoare logic conflating program
variables (like s, n) and specification variables (like oldn) is often a source of complexity and confusion, particularly
in combination with substitution, pointers, and more complex variable scoping rules. Unlike Hoare triples, which only
specify properties about final program states, reachability rules can also specify properties of intermediate states as
rules where the RHS has some intermediate code. A Hoare triple corresponds to a reachability rule whose RHS holds
the empty code, like the one above.

1.3 Proof System
Figure 1 shows the reachability logic proof system. The target language is given as a weakly well-defined reachability
system S. The soundness result in [9] guarantees that S |= ϕ⇒ ϕ′ if S ` ϕ⇒ ϕ′ is derivable. Note that the proof
system derives more general sequents of the formA `C ϕ⇒ ϕ′, whereA and C are sets of reachability rules. The rules
inA are called axioms and rules in C are called circularities. If C does not appear in a sequent, it means it is empty:
A ` ϕ⇒ ϕ′ is a shorthand forA `∅ ϕ⇒ ϕ′. Initially, C is empty andA is S. During the proof, circularities can be
added to C via Circularity and flushed intoA by Transitivity or Axiom. The intuition is that rules inA can be assumed
valid, while those in C have been postulated but not yet justified. After making progress it becomes (coinductively)
valid to rely on them. The intuition for sequentA `C ϕ⇒ ϕ′, read “A with circularities C proves ϕ⇒ ϕ′”, is: ϕ⇒ ϕ′

is true if the rules inA are true and those in C are true after making progress, and if C is nonempty then ϕ reaches ϕ′
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(or diverges) after at least one transition. Let us now discuss the proof rules.
Axiom states that a trusted rule can be used in any logical frame ψ. The logical frame is formalized as a patternless

formula, as it is meant to only add logical but no structural constraints. Incorporating framing into the axiom rule is
necessary to make logical constraints available while proving the conditions of the axiom hold. Since reachability logic
keeps a clear separation between program variables and logical variables the logical constraints are persistent, that is,
they do not interfere with the dynamic nature of the operational rules and can therefore be safely used for framing. This
is not the case for structural constraints. In other words, it is safe to add more logical constraints on existing reachability
properties, but it is unsafe to add more structural constraints. Additionally, note that the circularities are released as
trusted axioms when deriving the rule’s conditions, which is consistent with the intuition above for sequents.

Reflexivity and Transitivity correspond to corresponding closure properties of the reachability relation. Reflexivity
requires C to be empty to meet the requirement above, that a reachability property derived with nonempty C takes one or
more steps. Transitivity releases the circularities as axioms for the second premise, because if there are any circularities
to release the first premise is guaranteed to make progress. Consequence and Case Analysis are adapted from Hoare
logic. In Hoare logic Case Analysis is typically a derived rule, but there is no way to derive it language-independently.
Ignoring circularities, we can think of these five rules discussed so far as a formal infrastructure for symbolic execution.
Abstraction allows us to hide irrelevant details of ϕ behind an existential quantifier, which is particularly useful in
combination with the next proof rule.

Circularity has a coinductive nature and allows us to make a new circularity claim at any moment. We typically make
such claims for code with repetitive behaviors, such as loops, recursive functions, jumps, etc. If we succeed in proving
the claim using itself as a circularity, then the claim holds. This would obviously be unsound if the new assumption was
available immediately, but requiring progress before circularities can be used ensures that only diverging executions can
correspond to endless invocation of a circularity.

2 Low-level verification
Once we have established all the machinery of matching logic reachability, our focus turns toward whether we can
use it to prove interesting properties of low-level real-time programming languages. Our goal in this endeavor is to
take a trusted operational semantics of a programming language which includes scheduling information such as how
long an operation takes to perform, as well as operations which occur at specific points in time, and prove properties of
programs written in such a language, without further extending the proof system.

2.1 A simple low-level programming language
We consider a simple programming language and we define it K semantic framework. This programming language
is designed to be similar in structure to a simple RISC assembly language. It contains basic arithmetic instructions,
basic control flow instructions, a load/store architecture for communicating between registers and memory, and I/O
instructions for reading and writing external data which is provided at runtime nondeterministically, and an instruction
to schedule timer interrupts.

For simplicity, the language we define has an infinite number of registers and an infinite amount of memory space.
In practice, this has no real bearing on the semantics. We could just as easily write a language which uses register or
memory locations from a particular finite set. We also require that each label-prefixed block of code end with either
a jmp or a halt instruction. Finally, each instruction is assigned a fixed number of cycles that it takes to execute. A
more complex language might have modelled some kind of processor architecture in order to determine how long each
instruction takes to execute, but for simplicity we assume here that each instruction always takes the same fixed amount
of time (although different instructions can take different amounts of time). The full list of instructions and a simple
description of their behavior is given in Table 1.

Of particular interest are the read, write, rw, and int instructions which have scheduling considerations. The first
three of these are the I/O instructions of the language: read takes the name of an external data register and reads its
value into an internal register; write takes the name of an external data register and writes to it; finally, rw performs
atomically first a read of an external data register, then a write to the same external data register. The reason these three
instructions have scheduling considerations is that the environment the program is executing in can access (for read
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Opcode Description
add, sub, mul,
div, or, and, not

Arithmetic and bitwise operations, three-argument form. Can take either register or immediate
arguments to input. Stores to register.

load Load value into register from memory. Can index memory by register or immediate.
store Store value from register into memory. Can index memory by register or immediate, and can

take either register or immediate arguments to input.
jmp Unconditional jump instruction. Takes a program label.
beq, bne, blt,
ble, bgt, bge

Conditional branch instructions. Takes two inputs from register or immediate, performs an
arithmetic comparison, and conditionally jumps or falls through based on its value.

int Interrupt instruction. Takes two timer parameters and schedules a timer interrupt.
halt Immediately terminate program execution.
rfi Complete interrupt and return to normal mode, or proceed to next, lower-priority interrupt.
sleep Do nothing for a number of cycles expressed as input using a register or an immediate value.
read, write, rw Perform basic I/O operations.

Table 1: Instructions in the assembly-like language

or write) the values in the external data registers. Thus, depending on how much time has elapsed since the program
has begun executing, a single read instruction (in for example a loop) is capable of reading different values at each
execution of the instruction. If the environment writes a value to such a register in the middle of an instruction, the
value can be read with a read instruction as soon as the current instruction has finished executing. In particular, if the
environment writes to a register while it is being read, the read will read the old value. If the immediate next instruction
in the program is a write to the same external data register, the value written by the environment will be overwritten by
the program and lost. The atomic rw instruction addresses this issue, as it is guaranteed to not overwrite the value on
the external data register if it has already been overwritten by the environment while the instruction is executing.

Finally, the int instruction implements timer interrupts in the language. For simplicity, the user cannot disable an
interrupt once it has been scheduled, and cannot explicitly specify the priority of the interrupt. However, interrupts
do have priority based on ascending order of the time in the program’s execution that they are scheduled. The int
instruction takes two timer parameters. The first is the number of cycles after executing the instruction that the interrupt
will first fire, and the second is the overall period of the interrupt thereafter. Finally, high-priority interrupts will interrupt
low-priority interrupts, so the high-priority interrupt always finishes executing first. Only when all interrupts have been
serviced does the program return to normal execution mode. One side effect of this is that if the program schedules
interrupts too frequently, the execution will never terminate as the program will spend all the time treating interrupts.
Our goal is to prove under what conditions such a program will terminate using matching logic reachability.

Defining the semantics of this language is fairly straightforward and much resembles the way semantics of higher-
level languages are represented in the K framework. We declare a number of cells in the configuration to store the
current state of the program, and then provide a number of rules for simply rewriting programs. We begin by processing
the entire program into a map from block labels to the contents of their blocks, and then we jump to the block labelled
“main”. To keep the language simple, each block must end with an instruction describing how to get to the next
block (or describing the termination of the program), and we provide one rule for each instruction which modifies the
configuration with the result of the operation, and then increments the count of the current time, which in turn will
cause I/O to occur or interrupts to fire, based on the scheduling mechanics of the language. As an example of one rule
in the language, consider the below which, when combined with the mechanisms in the K framework for evaluating the
subterms of operations, serves to perform lookups of values in registers for instructions:

rule〈··· rI : Int⇒ I2 : Int〉k〈··· I 7→ I2 ···〉reg

In order to represent this language’s concrete state, we use a number of different top-level configuration cells such
as the currently executing block 〈...〉k, the code of the entire program 〈...〉pgm, the registers 〈...〉reg, the memory 〈...〉mem,
the current values of the external data registers 〈...〉status, the external I/O data events 〈...〉input, the time each instruction
takes to execute 〈...〉timing, the time the program has taken to execute so far 〈...〉wcet, the list of currently scheduled timer
interrupts 〈...〉timers, the current interrupt priority 〈...〉priority, and the stack of currently executing interrupts 〈...〉interrupts.

Given this programming language, we have written two sample programs which rely on scheduling information
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main: store #0, #0
li r0, #100
jmp loop
loop: rw r1, data, #0
load r2, #0
add r2, r2, r1
store #0, r2
sub r0, r0, #1
bne loop, r0, #0
halt

Figure 2: Assembly-like program to poll for external data.

main: li r 0 , #100
li r 1 , #0
li r 2 , #0
int t1, #7, #10
int t2, #10, #15
jmp loop

rule 〈$⇒ ·〉k〈$〉pgm

〈0 7→ (N⇒ 0), 1 7→ (T1⇒ (T1 + max(0, d ?Duration−Time1+Time
10 e))), 2 7→ (T2⇒ (T2 + max(0, d ?Duration−Tim2+Time

15 e)))〉reg
〈··· add 7→ 1, rfi 7→ 2 ···〉timing
〈Time⇒ Time + ?Duration〉wcet
〈(t1, (Time1⇒ ?_), 10)(t2, (Time2⇒ ?_), 15)〉timers
〈0〉priority
〈·〉stack
〈·〉interrupts

if (N > 0 ∧ Time1 > Time ∧ Time2 > Time)∧
(?Duration = 3 ∗ N + 1 + max(0, 3 ∗ d ?Duration−Time1+Time

10 e) + max(0, 3 ∗ d ?Duration−Time2+Time
15 e) ∧ ?Duration > 0)

loop: sub r 0 , r 0 , #1
bne loop , r 0 , #0
halt
t1: add r 1 , r 1 , #1
rfi
t2: add r 2 , r 2 , #1
rfi

Figure 3: Assembly-like program with two timer interrupts. The invariant in the grey box proves how long the program
takes to execute.

each in their own specific way. The first of these is given in Figure 2. It implements a simple polling loop which scans
the external I/O for numbers and sums them up in a location in memory. We have proven this program correct in the
sense that under certain conditions the polling loop will sum up numbers to the correct total. However, we do not go
into the details here. Instead, we choose to take a close look at the verification of the next example.

2.2 Proving low-level programs correct
The second program we have proven involves timer interrupts, and how long a program containing periodic interrupts
takes to execute. To go into more detail of how we prove things, the program as illustrated in Figure 3 contains a
representation of the invariant used to prove it.

This program is one which is not trivial to analyze. By the nature of interrupts, once they have been scheduled they
may occur at any time. A simplistic model of programming language semantics such as Hoare logic would struggle
to successfully capture the semantics of interrupts, because it would need to account for the fact that an interrupt can
occur before every single instruction when attempting to determine the effect any one instruction has on the pre- and
post-conditions of the Hoare triple. However, an operational semantics handles this without issue, because it stores the
current time in the configuration and automatically reroutes execution to the interrupt when specific time intervals have
elapsed. Because of this, and because matching logic reachability works by means of partially executing an operational
semantics, we can prove properties of the loop in this program correct in such a way as to be aware of the interrupts
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which may occur at any time, without needing to perform any additional work. We simply assert in the precondition
that interrupts will occur at some undetermined time in the future, and perform case analysis after each increment of the
time to decide whether we need to consider the possibility of an interrupt occurring at that moment.

Before we are able to analyze the invariant and explain what it does, it is necessary to introduce some notation
used to specify patterns. (1) While all specifications are reachability rules of the form ϕ⇒ ϕ′, often ϕ and ϕ′ share
configuration context. In these case we mention the shared context only once and distribute “⇒” across the shared
context only in those places where ϕ and ϕ′ differ. (2) To avoid writing existential quantifiers, logical variables starting
with “?” are assumed to be existentially quantified over the entire pattern. (3) To avoid writing portions of the pattern that
are not of particular concern to us, we represent anonymous variables using the _ symbol and anonymous existentially
quantified variables using the ?_ symbol. (4) In a cell in the configuration which is a collection (such as a map), we use
... to represent an implicit anonymous variable capturing the rest of the contents of the cell not explicitly denoted in
the pattern. (5) While both ϕ and ϕ′ contain logical formulas, each of which is separate from the other, we represent
those formulas together as a single formula joined with a conjunction in the side condition of the invariant rule. The
convention is that those conjuncts containing only variables present in the left hand side of the rule are part of ϕ, and
those conjuncts containing variables that are only present in the right hand side of the pattern are part of ϕ′. In particular
this is a safe and reasonable notation for representing the postcondition of the rule because since the variable valuation
does not change across the left and right hand sides of the pattern, all logical formulas expressed in the precondition are
necessarily true in the postcondition. So if desired, the entire side condition can also be viewed as the postcondition of
the rule. And those portions of the side condition which are not part of the precondition are simply those for whom
being part of the precondition would not make syntactic sense, since they refer to variables not yet bound.

To summarize the invariant as shown, and the way it is used to prove correct a property concerning execution of the
loop and the two interrupts, if N iterations of the loop remain to be executed, registers 1 and 2 have values T1 and T2
respectively, an add instruction takes 1 cycle to execute and a rfi instruction two, two timer interrupts are scheduled as
intervals of 10 and 15 cycles and will next execute at times Time1 and Time2 respectively, and we are currently at time
Time, in non-interrupt code, and at the beginning of a loop iteration, then after the loop has finished executing, the first
interrupt will have occurred an additional X times, the second interrupt an additional Y times, the entire loop will have
executed for ?Duration cycles, and X, Y, and ?Duration are determined by solving the following system of equations:

X = max(−1, d ?Duration−Time1+Time
10 e)

Y = max(0, d ?Duration−Time2+Time
15 e)

?Duration = 3 ∗ N + 1 + 3 ∗ X + 3 ∗ Y
This is consistent with the equations governing how long a task will take to execute when it has interference from

higher-priority periodic tasks.
The proof is fully automated. We begin executing the left hand side of the rule symbolically, performing case

analysis and circularity when needed. In order to perform circularity, we pass the current constraints to the Z3 SMT
solver [2] and automatically determine whether they imply the left hand side of the circularity we want to use. When we
reach a decision point in the operational semantics, case analysis breaks the configuration into two parts and executes
each separately, removing cases as Z3 tells us that the path we are on is logically infeasible. Then, when we reach
the right hand side of the reachability rule, we once again pass the constraints to Z3 and attempt to prove that the
implication of the postcondition is valid. If the postcondition is valid for all feasible paths through the execution, we
know we have proved the invariant correct. All of this is done automatically, and can be run in only a couple minutes,
despite the scheduling of interrupts generating a large number of case analyses in even a very simple program.

We are encouraged by our results in using matching logic to verify programs written in the low-level language
presented here. Although this are just preliminary results, we are confident that matching logic reachability and
operational semantics based verification can handle low-level languages without any modification to the proof system
or language-dependent reasoning.
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[8] Grigore Roşu and Andrei Ştefănescu. Towards a unified theory of operational and axiomatic semantics. In
ICALP’12, volume 7392 of LNCS, pages 351–363. Springer, 2012.
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